The efficiency of chitosan (a naturally occurring polymer) as a corrosion inhibitor for mild steel in 0.1 M HCl was investigated by gravimetric, potentiodynamic polarization, electrochemical impedance spectroscopy measurements, scanning electron microscopy, and UV-visible analysis. The polymer was found to inhibit corrosion even at a very low concentration. Inhibition efficiency increases with a rise in temperature up to 96 % at 60 °C and then drops to 93 % at 70 °C, while it slightly increases with an increase in chitosan concentration. Polarization curves indicate that chitosan functions as a mixed inhibitor, affecting both cathodic and anodic partial reactions. Impedance results indicate that chitosan was adsorbed on the metal/ solution interface. Adsorption of chitosan at the mild steel surface is found to be in agreement with Langmuir adsorption isotherm model. Chemical adsorption is the proposed mechanism for corrosion inhibition considering the trend of protection efficiency with temperature. Calculated kinetic and thermodynamic parameters corroborate the proposed mechanism.
Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.
Combined use of electrochemical techniques (electrochemical impedance spectroscopy and cyclic voltammetry) and quartz crystal microbalance with dissipation allowed to resolve separately the thermal effects on diffusion and electron-transfer steps of the electrochemical reaction of the [Fe(CN) 6 ] 3−/4− redox couple at a Au electrode modified with poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) brushes. Arrhenius-type dependences of the kinetic constant and the diffusion coefficient with temperature were observed in different electrolytes. Ion-paired collapsed polyelectrolyte brushes in NaClO 4 result in compact stiff structures with less amount of entrapped water and markedly different from the same brushes with a collapse driven by pure Coulombic screening in NaCl. A remarkable difference related to the type of counterion is the occurrence of a thermal transition for the polyelectrolyte brush in the presence of ClO 4 − ions at near-ambient temperature (∼17 °C). Activation energies for electron-transfer and diffusion processes become twice as large as those for temperatures above the thermal transition. These electrochemical studies demonstrate not only the critical role of ion-pairing interactions in determining the physicochemical properties of the macromolecular system but also provide experimental evidence of counterion-induced thermocontrolled transport functionality in the polyelectrolyte brush layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.