International audienceMost recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives through a more realistic simulation of the way humans navigate according to their perception of the surrounding environment. In this paper, we propose a new perception/motion loop to steering agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with solutions where agents avoid collisions in a purely reactive (binary) way, we suggest exploring the full range of possible adaptations and retaining the locally optimal one. To this end, we introduce a cost function, based on perceptual variables, which estimates an agent's situation considering both the risks of future collision and a desired destination. We then compute the partial derivatives of that function with respect to all possible motion adaptations. The agent then adapts its motion by following the gradient. This paper has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the perceived danger of the current situation. We demonstrate improvements in several cases
Crowd Simulation is very important in many virtual reality applications, because it improves the sense of immersion of the users by making the population of agents in the environment to move as real crowds do. Recently, models for simulating crowds, in which each agent is equipped with a synthetic vision system, have shown interesting results regarding the natural manner in which the agents navigate inside the environment thanks to their visual perception. In this article, we propose an upgrade to the agent’s visual system with a panoramic view in order to allow an agent to expand its vision beyond the limit of 180o imposed by the common projection provided by rendering APIs. Also, we analyze different parameters, which are used to define the field of view, to investigate the influence they have on the agent’s behavior. The impacts that those changes may cause on the efficiency of the algorithms are also analysed. A visible change on the agent’s behavior is achieved by using the technique, with a slight loss of performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.