We successfully optimized AuNPs, modified DNA aptamer and magnesium sulphate salt to enhance the selectivity and sensitivity for detection of Ac. The accuracy of the detection was also improved by image processing technique.
Geophysical data through electrical resistivity tomography (ERT) and induced polarization (IP) can be assisted to understanding hydrogeological characteristic of groundwater aquifer. By knowing the difference in electrical resistivity and induced polarization values in alluvium deposition will facilitate to identify any groundwater occurrence. In agriculture sector, shallow tube well will be option to farmers due to more economic. The resistivity measurements proved to be a good tool for mapping the subsurface in the Alluvium, especially when used in combination with Induced Polarization parameters. Alluvial deposits or fluvial deposits are composed of particles of gravel, sand, silt or clay size that are not bound or hardened by permeable mineral, by pressure, or thermal alteration of the grains. Consideration of gravelly deposition is the higher hydraulic conductivity. Furthermore, coarse to fine sand are the second higher followed by silt and clay are the lowest values. From the case study, the electrical resistivity tomography of these deposits ranged from 40 to 1000 Ωm, while the values of chargeability were 0 to 20 mS/m. The bottom of the aquifer consisted of a layer with gravelly sandy silt, and the resistivity was 260 Ωm, while the chargeability was 6.5 mS/m. The shallow tube well in quaternary aquifer was constructed at 51 m depth with thickness of aquifer was 24 m to 51 m depth into the ground will consider for groundwater resources. The groundwater discharge from tubewell is 6.53 m3/hr in mixed gravel, sandy and silt.
The application of unmanned aerial vehicles (UAV) in Malaysia, or best known as a drone, is changing from time to time. Today, drones are used not only in the military, but also in agriculture. The use of drones became common in agriculture due to a reduction in cultivated land, labour shortages and obsolete methods. The spraying of pesticides and herbicides may also be carried out using drones. Furthermore, the time-consumed using drone is faster compared to the conventional method. On the market, there are different kinds and types of drone sprayers. Although the manufacturer has set the Standard Operating Procedure (SOP) for drone usage, the efficacy of spraying should first be examined because of Malaysia's weather and environmental factors which vary from other countries. The purpose of this paper is to investigate the effects of altitude and speed of the drone onto the coverage area during spraying application. In this study, a plot consisting of 0.5 Hectares situated at MARDI Seberang Perai was used. Three different speeds of 2 m/s, 3 m/s, and 4 m/s and three altitudes measured in heights of 1.5 m, 2.0 m, and 2.5 m from the top of the crop were tested. Wind speed and direction were recorded using an anemometer during the study. Water-sensitive paper was used during the experiment to examine the effect on spraying. In order to calculate the coverage area percentage, the spraying effect on water sensitive paper was analysed using ImageJ software. The results are expected to show which speed and altitude may contribute to the largest area of coverage percentage. The appropriate altitude and speed for the spraying operation on the basis of crop requirements can be concluded from the result which is 2 m from above crop at speed of 2.5 m/s.
Rice (Oryza sativa L.) is a staple food in many Asian countries with an ever increasing demand. However, the production of high quality rice seeds is insufficient to meet this demand. Research on plant growth in space related to the exposure of a microgravity environment are rare, costly and time-limited. Similar experiments can be conducted on the ground to simulate the microgravity condition using a 2-D clinostat which compensates for the unilateral influence of gravity. This study was conducted to establish a simple and cost effective technique to enhance the quality of the Malaysian rice seed variety MR 219 by using a 2-D clinostat and to determine the effects of simulated microgravity on the growth and yield of the rice seeds. The experiments were performed at different rotation speeds (2 rpm and 10 rpm) for 10 days at room temperature. The rice growth and yield parameters were measured every 2 weeks and at harvest time (day 110), respectively. The data were analysed using the MINITAB statistical software package. The mean value estimates of the parameters obtained under different conditions were compared using analysis of variance (ANOVA) with the Tukey test for multiple comparisons using a 0.05 significance level. Significant differences in the number of tiller, stem width , chlorophyll content , weight of grains and panicles and total grain weight per plant were identified at rotation speed 10 rpm when compared to rotation speed 2 rpm and control. The highest means were mainly obtained under 10 rpm clinorotated rice seeds. In general, plants grown from 10 rpm clinorotated seeds are also more resistant to rice diseases (rice blast disease, rice tungro disease and hopper burn). These results suggest that simulated microgravity using a 2-D clinostat affected several rice (MR219) growth and yield parameters significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.