Oncolytic replicating adenoviruses are a promising new modality for the treatment of cancer. Despite the assumed biologic advantage of continued viral replication and spread from infected to uninfected cancer cells, early clinical trials demonstrate that the efficacy of current vectors is limited. In xenograft tumor models using immune-incompetent mice, wild-type adenovirus is also rarely able to eradicate established tumors. This suggests that innate immune mechanisms may clear the virus or that barriers within the tumor prevent viral spread. The aim of this study was to evaluate the kinetics of viral distribution and spread after intratumoral injection of virus in a human tumor xenograft model. After intratumoral injection of wild-type virus, high levels of titratable virus persisted within the xenograft tumors for at least 8 weeks. Virus distribution within the tumors as determined by immunohistochemistry was patchy, and virus-infected cells appeared to be flanked by tumor necrosis and connective tissue. The close proximity of virus-infected cells to the tumor-supporting structure, which is of murine origin, was clearly demonstrated using a DNA probe that specifically hybridizes to the B1 murine DNA repeat. Importantly, although virus was cleared from the circulation 6 hr after intratumoral injection, after 4 weeks systemic spread of virus was detected. In addition, vessels of infected tumors were surrounded by necrosis and an advancing rim of virus-infected tumor cells, suggesting reinfection of the xenograft tumor through the vasculature. These data suggest that human adenoviral spread within tumor xenografts is impaired by murine tumor-supporting structures. In addition, there is evidence for continued viral replication within the tumor, with subsequent systemic dissemination and reinfection of tumors via the tumor vasculature. Despite the limitations of immune-incompetent models, an understanding of the interactions between the virus and the tumor-bearing host is important in the design of effective therapies.
Successful cancer therapy using replicating viral vectors relies on the spread of virus from infected to uninfected cells. To date, there has been limited clinical success in the use of replicating adenoviruses. In animal models, established xenograft tumors are rarely eliminated despite the persistence of high viral titers within the tumor. Hypoxia is a prevalent characteristic of solid tumors, whereas adenovirus naturally infects tissues exposed to ambient oxygen concentrations. Here, we report that hypoxia (1% oxygen) reduces adenoviral replication in H1299 and A549 lung cancer cells, BxPC-3 pancreatic cancer cells, LNCaP prostate cancer cells and HCT116 colon cancer cells. However, hypoxia does not reduce cell viability or restrict S-phase entry. Importantly, the production of E1a and fiber proteins under hypoxic conditions was substantially decreased at 24 and 48 h compared to room air controls. In contrast, Northern analysis showed similar levels of E1a mRNA in room air and hypoxic conditions. In conclusion, a level of hypoxia similar to that found within solid tumors reduces the replication of adenoviral vectors by reduction of viral protein expression without a reduction in mRNA levels. To further improve oncolytic therapy using a replicating adenovirus, it is important to understand the mechanism through which hypoxia and the virus interact to control expression of viral and cellular proteins, and consequently to develop means to overcome decreased viral production in hypoxic conditions. Gene Therapy (2005) 12, 911-917.
Gene transfer of p53 induces cell death in most cancer cells, and replication-defective adenoviral vectors expressing p53 are being evaluated in clinical trials. However, low transduction efficiency limits the efficacy of replication-defective vector systems for cancer therapy. The use of replication-competent vectors for gene delivery may have several advantages, holding the potential to multiply and spread the therapeutic agent after infection of only a few cells. However, expression of a transgene may adversely affect viral replication. We have constructed a replicating adenoviral vector (Adp53rc) that expresses high levels of p53 at a late time point in the viral life cycle and also contains a deletion of the adenoviral death protein (ADP). Adp53rc-infected cancer cells demonstrated high levels of p53 expression in parallel with the late expression pattern of the adenoviral fiber protein. p53 expression late in the viral life cycle did not impair effective virus propagation. Survival of several lung cancer cell lines was significantly diminished after infection with Adp53rc, compared with an identical p53-negative control virus. p53 expression also improved virus release and spread. Interestingly, p53 was more cytotoxic than the ADP in cancer cells but less cytotoxic than the ADP in normal cells. In conclusion, late expression of p53 from a replicating virus improves tumor cell killing and viral spread without impairing viral replication. In addition, in combination with a deletion of the ADP, specificity of tumor cell killing is improved.
These data show that adenoviral mediated expression of angiopoietin-1 can protect against the development of lung capillary protein leak and decrease the mortality induced by endotoxin. However, the timing of AdAng1 administration in relation to the onset of lung injury may be critical.
Replicating adenoviral vectors are capable of multiplying up to a thousandfold in the target cell, a property that might prove to be of tremendous potential for cancer therapy. However, restricting viral replication and toxicity to cancer cells is essential to optimize safety. It has been proposed that modifications of the E1a protein that impair binding to Rb or p300 will prevent S-phase induction in normal cells, resulting in selective viral replication in tumor cells. However, it remains uncertain which of the several possible E1a modifications would be most effective at protecting normal cells without compromising the oncolytic effect of the vector. In this study, we have expressed several E1a-deletion mutants at high levels using the CMV promoter and tested them for their ability to facilitate S-phase induction, viral replication, and cytotoxicity in both normal and cancer cells. Deletion of the Rb-binding domain within E1a only slightly decreased the ability of the virus to induce S phase in growth-arrested cells. The effect of this deletion on viral replication and cytotoxicity was variable. There was reduced cytotoxicity in normal bronchial epithelial cells; however, in some normal cell types there was equal viral replication and cytotoxicity compared with wild type. Deletions in both the N-terminus and the Rb-binding domain were required to block S-phase induction effectively in growth-arrested normal cells; in addition, this virus demonstrated reduced viral replication and cytotoxicity in normal cells. An equally favorable replication and cytotoxicity profile was induced by a virus expressing E1a that is incapable of binding to the transcriptional adapter motif (TRAM) of p300. All viruses were equally cytotoxic to cancer cells compared with wild-type virus. In conclusion, deletion of the Rb-binding site alone within E1a may not be the most efficacious means of targeting viral replication and toxicity. However, deletion within the N-terminus in conjunction with a deletion within the Rb-binding domain, or deletion of the p300-TRAM binding domain, induces a more favorable cytotoxicity profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.