The results of this paper show that neural networks could be a very promising tool for reliability data analysis. Identifying the underlying distribution of a set of failure data and estimating its distribution parameters are necessary in reliability engineering studies. In general, either a chi‐square or a non‐parametric goodness‐of‐fit test is used in the distribution identification process which includes the pattern interpretation of the failure data histograms. However, those procedures can guarantee neither an accurate distribution identification nor a robust parameter estimation when small data samples are available. Basically, the graphical approach of distribution fitting is a pattern recognition problem and parameter estimation is a classification problem where neural networks have been proved to be a suitable tool. This paper presents an exploratory study of a neural network approach, validated by simulated experiments, for analysing small‐sample reliability data. A counter‐propagation network is used in classifying normal, uniform, exponential and Weibull distributions. A back‐propagation network is used in the parameter estimation of a two‐parameter Weibull distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.