We study three different types of local quenches (local operator, splitting and joining) in both the free fermion and holographic CFTs in two dimensions. We show that the computation of a quantity called entanglement density, provides a systematic method to capture essential properties of local quenches. This allows us to clearly understand the differences between the free and holographic CFTs as well as the distinctions between three local quenches. We also analyze holographic geometries of splitting/joining local quenches using the AdS/BCFT prescription. We show that they are essentially described by time evolutions of boundary surfaces in the bulk AdS. We find that the logarithmic time evolution of entanglement entropy arises from the region behind the Poincaré horizon as well as the evolutions of boundary surfaces. In the CFT side, our analysis of entanglement density suggests such a logarithmic growth is due to initial non-local quantum entanglement just after the quench. Finally, by combining our results, we propose a new class of gravity duals, which are analogous to quantum circuits or tensor networks such as MERA, based on the AdS/BCFT construction.
In this work we extensively study the dynamics of excited states created by instantaneous local quenches at two different points, i.e. double local quenches. We focus on setups in two dimensional holographic and free Dirac fermion CFTs. We calculate the energy stress tensor and entanglement entropy for double joining and splitting local quenches. In the splitting local quenches we find an interesting oscillating behaviors. Finally, we study the energy stress tensor in double operator local quenches. In all these examples, we find that, in general, there are non-trivial interactions between the two local quenches. Especially, in holographic CFTs, the differences of the above quantities between the double local quench and the simple sum of two local quenches tend to be negative. We interpret this behavior as merely due to gravitational force in their gravity duals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.