Despite the common view that conditions in winter strongly influence survival and population size of fish, the ecology of salmonids has not been as extensively studied in winter as in other seasons. In this paper, we review the latest studies on salmonid winter survival, habitat use, movement and biotic interactions as they relate to the prevailing physical and habitat conditions in rivers and streams. The majority of research conducted on the winter ecology of salmonids has been carried out in small rivers and streams, where temperatures are above zero and where there is no ice. Investigations in large rivers, regulated and dredged rivers, and under conditions of different ice formations are almost totally lacking, presumably related to sampling difficulties with these systems. The studies-at-hand indicate that a multitude of physical and biological factors affect the survival, behavior, and habitat use of salmonids in winter. The general concept that winter functions as a critical period for the survival of young salmonids is not well supported by the literature. Instead, overwinter survival of juvenile fish appears to be context-dependent, related to specific habitat characteristics and ice regimes of streams. In general, over wintering salmonids prefer sheltered, low velocity microhabitats, are mainly nocturnal, and interact relatively little with conspecifics or interspecifics. Specific descriptions of microhabitat preferences of salmonids are difficult to make due to highly disparate results from the literature. We suggest that future research should be directed towards (1) being able to predict the dynamics of freezing and ice processes at different scales, especially at the local scale, (2) studying fish behavior, habitat use and preference under partial and full ice cover, (3) evaluating the impacts of man-induced environmental modifications (e. g. flow regulation, land-use activities) on the ecology of salmonids in winter, and (4) identifying methods to model and assess winter habitat conditions for salmonids.
The primary focus of many in-stream restoration projects is to enhance habitat diversity for salmonid fishes, yet the lack of properly designed monitoring studies, particularly ones with pre-restoration data, limits any attempts to assess whether restoration has succeeded in improving salmonid habitat. Even less is known about the impacts of fisheries-related restoration on other, non-target biota. We examined how restoration aiming at the enhancement of juvenile brown trout (Salmo trutta L.) affects benthic macroinvertebrates, using two separate data sets: (1) a before-after-control-impact (BACI) design with three years before and three after restoration in differently restored and control reaches of six streams; and (2) a space-time substitution design including channelized, restored, and near-natural streams with an almost 20-year perspective on the recovery of invertebrate communities. In the BACI design, total macroinvertebrate density differed significantly from before to after restoration. Following restoration, densities decreased in all treatments, but less so in the controls than in restored sections. Taxonomic richness also decreased from before to after restoration, but this happened similarly in all treatments. In the long-term comparative study, macroinvertebrate species richness showed no difference between the channel types. Community composition differed significantly between the restored and natural streams, but not between restored and channelized streams. Overall, the in-stream restoration measures used increased stream habitat diversity but did not enhance benthic biodiversity. While many macroinvertebrates may be dispersal limited, our study sites should not have been too distant to reach within almost two decades. A key explanation for the weak responses by macroinvertebrate communities may have been historical. When Fennoscandian streams were channelized for log floating, the loss of habitat heterogeneity was only partial. Therefore, habitat may not have been limiting the macroinvertebrate communities to begin with. Stream restoration to support trout fisheries has strong public acceptance in Finland and will likely continue to increase in the near future. Therefore, more effort should be placed on assessing restoration success from a biodiversity perspective using multiple organism groups in both stream and riparian ecosystems.
Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.
Invasive alien species (IAS) are a significant and growing problem worldwide. In Europe, some aspects of IAS have been addressed through existing legal instruments, but these are far from sufficient to tackle the problem comprehensively. The FINS II Conference considered the relevance of Top 20 IAS issues (Top 10 threats and opportunities) for Europe determined at the 1st Freshwater Invasiveness – Networking for Strategy (FINS I) conference held in Ireland in 2013. Using a similar format of sequential group voting, threats from FINS I (lack of funding, of awareness and education; poor communication) and several new threats (lack of lead agencies, of standardized management and of common approach; insufficient monitoring and management on private property) were identified by 80 academics, applied scientists, policy makers and stakeholders from 14 EU and three non-EU countries (including 10 invited speakers) during four workshop break-out sessions (legislation remit in both EU/non-EU countries; best management and biosecurity practice for control; data management and early warning; pathways of introductions and citizen science). Identified opportunities include improved cooperation and communication, education and leadership to enhance public awareness and stakeholder participation, systems establishment for early detection, rapid response, monitoring and management of IAS using standardised methods of data collection, storage and usage. The sets of threats and opportunities identified underline the importance of international cooperation on IAS issues in communication, education and funding as priorities, as well as in standardization of legislation, control methods and best practise of research
The performance and movements of juvenile Atlantic salmon Salmo salar exposed to variable water discharge (simulating hydropeaking) but with a stable water‐covered area were studied in six experimental stream channels, both during the winter and summer. Thirty fish were stocked into each channel, and the growth, body fat and movements of the fish were followed for about 2.5 months in each season. During the winter, no effect of hydropeaking was documented on performance or movement. In the summer, fish experiencing hydropeaking had lower body mass, lower body fat, and higher movement rates than the control fish. In general, effect sizes were small, and the rapid and frequent changes in water discharge and water level in the present study had small effects on the performance of juvenile Atlantic salmon. The cumulative long‐term effect at the population level is unknown, but a reduced growth rate of 10% and a reduction in body fat of 16% in the hydropeaking experiments in the summer might to some extent translate into increased smolt age and lower overwintering survival. Copyright © 2014 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.