Prevention and treatment of myopia is an important public problem worldwide. We found a higher incidence of myopia among patients with inflammatory diseases such as type 1 diabetes mellitus (7.9%), uveitis (3.7%), or systemic lupus erythematosus (3.5%) compared to those without inflammatory diseases (p < 0.001) using data from children (< 18 years old) in the National Health Insurance Research database. We then examined the inhibition of myopia by atropine in Syrian hamsters with monocular form deprivation (MFD), an experimental myopia model. We found atropine downregulated inflammation in MFD eyes. The expression levels of c-Fos, nuclear factor κB (NFκB), interleukin (IL)-6, and tumor necrosis factor (TNF)-α were upregulated in myopic eyes and downregulated upon treatment with atropine. The relationship between the inflammatory response and myopia was investigated by treating MFD hamsters with the immunosuppressive agent cyclosporine A (CSA) or the inflammatory stimulators lipopolysaccharide (LPS) or peptidoglycan (PGN). Myopia progression was slowed by CSA application but was enhanced by LPS and PGN administration. The levels of c-Fos, NF-κB, IL-6, and TNF-α were upregulated in LPS- and PGN-treated eyes and downregulated by CSA treatment. These findings provide clinical and experimental evidence that inflammation plays a crucial role in the development of myopia.
BackgroundFlavones found in plants display various biological activities, including anti-allergic, anti-viral, anti-inflammatory, anti-oxidation, and anti-tumor effects. In this study, we investigated the anti-tumor effects of flavone, apigenin and luteolin on human breast cancer cells.MethodsThe anti-cancer activity of flavone, apigenin and luteolin was investigated using the MTS assay. Apoptosis was analyzed by Hoechst 33342 staining, flow cytometry and western blot. Cell migration was determined using the culture inserts and xCELLigence real-time cell analyzer instrument equipped with a CIM-plate 16. Real-time quantitative PCR and western blot were used to determine the signaling pathway elicited by flavone, apigenin and luteolin.ResultsFlavone, apigenin and luteolin showed potent inhibitory effects on the proliferation of Hs578T, MDA-MB-231 and MCF-7 breast cancer cells in a concentration and time-dependent manner. The ability of flavone, apigenin and luteolin to inhibit the growth of breast cancer cells through apoptosis was confirmed by Hoechst33342 staining and the induction of sub-G1 phase of the cell cycle. Flavone, apigenin and luteolin induced forkhead box O3 (FOXO3a) expression by inhibiting Phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB)/Akt. This subsequently elevated the expression of FOXO3a target genes, including the Cyclin-dependent kinase inhibitors p21Cip1 (p21) and p27kip1 (p27), which increased the levels of activated poly(ADP) polymerase (PARP) and cytochrome c.ConclusionTaken together, these data demonstrated that flavone, apigenin and luteolin induced cell cycle arrest and apoptosis in breast cancer cells through inhibiting PI3K/Akt activation and increasing FOXO3a activation, which suggest that flavone, apigenin and luteolin will be the potential leads for the preventing and treating of breast cancer.
Influenza virus infection is a global public health issue. The effectiveness of antiviral therapies for influenza has been limited by the emergence of drug-resistant viral strains. Therefore, there is an urgent need to identify novel antiviral therapies. Here we tested the effects of 300 traditional Chinese medicines on the replication of various influenza virus strains in a lung cell line, A549, using an influenza-specific luciferase reporter assay. Of the traditional medicines tested, Polygonum cuspidatum (PC) and its active components, resveratrol and emodin, were found to attenuate influenza viral replication in A549 cells. Furthermore, they preferentially inhibited the replication of influenza A virus, including clinical strains isolated in 2009 and 2011 in Taiwan and the laboratory strain A/WSN/33 (H1N1). In addition to inhibiting the expression of hemagglutinin and neuraminidase, PC, emodin, and resveratrol also increased the expression of interferon beta (IFN-β) through Toll-like receptor 9 (TLR9). Moreover, the anti-viral activity of IFN-β or resveratrol was reduced when the A549 cells were treated with neutralizing anti-IFN-β antibodies or a TLR9 inhibitor, suggesting that IFN-β likely acts synergistically with resveratrol to inhibit H1N1 replication. This potential antiviral mechanism, involving direct inhibition of virus replication and simultaneous activation of the host immune response, has not been previously described for a single antiviral molecule. In conclusion, our data support the use of PC, resveratrol or emodin for inhibiting influenza virus replication directly and via TLR-9–induced IFN-β production.
The domestic pig is an important source of human salmonellosis, and houseflies are potential mechanical vectors of foodborne Salmonella pathogens. In 2005, we recovered 144 Salmonella isolates from flies and swine stool samples from 11 farms in Taoyuan County and Hsin Chu County (northwestern Taiwan). A total of 71.5% of the isolates were resistant to at least three antibiotics. There were a total of 14 serotypes, and 8 of these serotypes were present in both flies and swine stool samples. Some multidrug-resistant Salmonella strains coming from different swine farms were found to have identical pulsed-field gel electrophoresis (PFGE). Among four common serotypes, we identified 18 PFGE patterns, 8 of which were present in flies and swine stools. The similarity in PFGE profiles between isolates from swine and flies in different farms indicate the potential of flies to serve as a vector for transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.