A growing body of evidence suggests that a majority of people with celiac disease and on a gluten-free diet can safely consume pure oats in moderate amounts; however, previous studies have indicated that the commercial oat supply in other countries, and in Canada to some extent, is contaminated with other grains. This study has confirmed that the commercial oat supply in Canada is heavily contaminated with gluten from other grains. Approximately 88% of the oat samples (n = 133) were contaminated above 20 mg kg−1 and there were no differences between the oat types tested. Only one gluten-free variety of oats was analysed and it consistently provided negative results in all analyses. It is difficult to determine where the contamination originates, but there are possibilities for cross-contamination in the field, in the transport of the grain, in the storage of the grain, and in the milling and packaging facilities. It is clear from this study that only those products that have been certified ‘pure’ oats would be appropriate for a gluten-free diet.
This paper provides an overview of the latest scientific data related to the safety of uncontaminated oats (<20 ppm of gluten) in the diet of individuals with celiac disease (CD). It updates the previous Health Canada position posted on the Health Canada website in 2007 and a related paper published in 2009. It considers a number of recent studies published between January 2008 and January 2015. While recognizing that a few people with celiac disease seem to be clinically intolerant to oats, this review concludes that oats uncontaminated by gluten-containing cereals (wheat, rye, and barley) can be safely ingested by most patients with celiac disease and that there is no conclusive evidence that the consumption of uncontaminated or specially produced oats containing no greater than 20 ppm gluten by patients with celiac disease should be limited to a specific daily amount. However, individuals with CD should observe a stabilization phase before introducing uncontaminated oats to the gluten-free diet (GFD). Oats uncontaminated with gluten should only be introduced after all symptoms of celiac disease have resolved and the individual has been on a GFD for a minimum of 6 months. Long-term regular medical follow-up of these patients is recommended but this is no different recommendation to celiac individuals on a GFD without oats.
A large national investigation into the extent of gluten cross-contamination of naturally gluten-free ingredients (flours and starches) sold in Canada was performed. Samples (n = 640) were purchased from eight Canadian cities and via the internet during the period 2010-2012 and analysed for gluten contamination. The results showed that 61 of the 640 (9.5%) samples were contaminated above the Codex-recommended maximum level for gluten-free products (20 mg kg⁻¹) with a range of 5-7995 mg kg⁻¹. For the ingredients that were labelled gluten-free the contamination range (5-141 mg kg⁻¹) and number of samples were lower (3 of 268). This picture was consistent over time, with approximately the same percentage of samples above 20 mg kg⁻¹ in both the initial set and the subsequent lot. Looking at the total mean (composite) contamination for specific ingredients the largest and most consistent contaminations come from higher fibre ingredients such as soy (902 mg kg⁻¹), millet (272 mg kg⁻¹) and buckwheat (153 mg kg⁻¹). Of the naturally gluten-free flours and starches tested that do not contain a gluten-free label, the higher fibre ingredients would constitute the greatest probability of being contaminated with gluten above 20 mg kg⁻¹.
Malachite green (MG), a member of the N-methylated triphenylmethane class of dyes, has long been used to control fungal and protozoan infections in fish. MG is easily absorbed by fish during waterborne exposure and is rapidly metabolized into leucomalachite green (LMG), which is known for its long residence time in edible fish tissue. This paper describes the development of an enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of LMG in fish tissue. This development includes a simple and versatile method for the conversion of LMG to monodesmethyl-LMG, which is then conjugated to bovine serum albumin (BSA) to produce an immunogenic material. Rabbit polyclonal antibodies are generated against this immunogen, purified and used to develop a direct competitive enzyme-linked immunosorbent assay (ELISA) for the screening and quantification of LMG in fish tissue. The assay performed well, with a limit of detection (LOD) and limit of quantification (LOQ) of 0.1 and 0.3 ng g−1 of fish tissue, respectively. The average extraction efficiency from a matrix of tilapia fillets was approximately 73% and the day-to-day reproducibility for these extractions in the assay was between 5 and 10%.
Glabrous (hairless) canary seed belongs to the Poaceae (Gramineae) family and could serve as an alternative source of gluten-free cereal grain. In this study, allergenic cross-reactivities between hairless, dehulled canary seeds (Phalaris canariensis) and major allergenic proteins from gluten, soy, peanuts, tree nuts, sesame, and mustard were studied using commercial enzyme-linked immune sorbent assay (ELISA) kits specific for these target allergens. Mass spectrometry (MS) and immunoblotting were further used to assess for the presence of gluten-specific protein fragments. MS results revealed the likely presence of proteins homologous with rice, oat, corn, carrot, tomato, radish, beet, and chickpea. However, no presence of celiac-related gluten fragments from wheat, rye, barley, or their derivatives was found. Immunoblotting studies yielded negative results, further confirming the absence of gluten in the canary seed samples tested. No cross-reactivities were detected between canary seeds and almond, hazelnut, mustard, peanut, sesame, soy, walnut, and gluten using ELISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.