Protein kinase C (PKC) is implicated in the regulation of multiple important functions in intestinal epithelial cells, but the downstream signaling targets of PKCs in these cells remain poorly characterized. Here we report that treatment of normal rat intestinal cell lines IEC-6 and IEC-18 with phorbol 12,13-dibutyrate (PDBu) led to a rapid and striking PKC-dependent activation of protein kinase D (PKD; also known as PKCmu). Unlike conventional and novel PKCs, PKD did not undergo downregulation in response to prolonged (24 h) exposure of IEC-6 or IEC-18 cells to PDBu. PKD was also rapidly activated in these cells by lysophosphatidic acid (LPA) or angiotensin in a concentration-dependent fashion via a PKC-dependent pathway. EC(50) values were 0.1 microM and 2 nM for LPA and angiotensin II, respectively. LPA-induced PKD activation was prevented selectively by treatment with pertussis toxin. PKD activation was tightly associated with an increase in PKD autophosphorylation at serine 916. Our results identify PKD as a novel early point of convergence and integration of G(i) and G(q) signaling in intestinal epithelial cells.
Here, we demonstrate that arginine vasopressin (AVP) induces multiple intracellular signal transduction pathways in rat intestinal epithelial IEC-18 cells via a V 1A receptor. Addition of AVP to these cells induces a rapid and transient increase in cytosolic Ca 2ϩ concentration and promotes protein kinase D (PKD) activation through a protein kinase C (PKC)-dependent pathway, as revealed by in vitro kinase assays and immunoblotting with an antibody that recognizes autophosphorylated PKD at Ser 916 . AVP also stimulates the tyrosine phosphorylation of the nonreceptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) and promotes Src family kinase phosphorylation at Tyr 418 , indicative of Src activation. AVP induces extracellular signal-related kinase (ERK)-1 (p44 mapk ) and ERK-2 (p42 mapk ) activation, a response prevented by treatment with mitogen-activated protein kinase kinase (MEK) inhibitors (PD-98059 and U-0126), specific PKC inhibitors (GF-I and Ro-31-8220), depletion of Ca 2ϩ (EGTA and thapsigargin), selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (tyrphostin AG-1478, compound 56), or the selective Src family kinase inhibitor PP-2. Furthermore, AVP acts as a potent growth factor for IEC-18 cells, inducing DNA synthesis and cell proliferation through ERK-, Ca 2ϩ -, PKC-, EGFR tyrosine kinase-, and Src-dependent pathways. arginine vasopressin; protein kinase D; protein kinase C; Src; proline-rich tyrosine kinase 2; intestinal epithelial proliferation THE SEQUENTIAL PROLIFERATION, lineage-specific differentiation, migration, and cell death of epithelial cells of the intestinal mucosa is a tightly regulated process that is modulated by a broad spectrum of regulatory peptides (8,36,70). The nontransformed IEC-6 and IEC-18 cells, derived from rat small intestinal crypt (56), have provided an in vitro model to examine intestinal epithelial cell migration, differentiation, and proliferation (16,27,58,70). Previous studies demonstrated that the proliferation and migration of these intestinal epithelial cells is regulated by a variety of polypeptide growth factors, including epidermal growth factor (EGF), insulin-like growth factor I, and hepatocyte growth factor, which act via single-pass transmembrane tyrosine kinase receptors (3,17,51). Neuropeptides and vasoactive peptides that signal through G protein-coupled receptors (GPCRs), characterized by seven-transmembrane helices, also act as potent cellular growth factors for a variety of cell types (63,64,66,67). However, the role of GPCRs and their ligands in intestinal epithelial cell signaling and proliferation remains poorly understood.The neurohypophysial nonapeptide arginine vasopressin (AVP), also known as antidiuretic hormone, is traditionally recognized for its role as a vasoconstrictor hormone acting on vascular smooth muscle cells and its antidiuretic effect via the renal collecting system. In addition to its function in the regulation of body fluid osmolality, vascular tone, and blood pressure, AVP acts as a growth-promo...
The signaling pathways mediating lysophosphatidic acid (LPA)-stimulated PKD(2) activation and the potential contribution of PKD(2) in regulating LPA-induced interleukin 8 (IL-8) secretion in nontransformed, human colonic epithelial NCM460 cells were examined. Treatment of serum-deprived NCM460 cells with LPA led to a rapid and striking activation of PKD(2), as measured by in vitro kinase assay and phosphorylation at the activation loop (Ser706/710) and autophosphorylation site (Ser876). PKD(2) activation induced by LPA was abrogated by preincubation with selective PKC inhibitors GF-I and Ro-31-8220 in a dose-dependent manner. These inhibitors did not have any direct inhibitory effect on PKD(2) activity. LPA induced a striking increase in IL-8 production and stimulated NF-kappaB activation, as measured by NF-kappaB-DNA binding, NF-kappaB-driven luciferase reporter activity, and IkappaBalpha phosphorylation. PKD(2) gene silencing utilizing small interfering RNAs targeting distinct PKD(2) sequences dramatically reduced LPA-stimulated NF-kappaB promoter activity and IL-8 production. PKD(2) activation is a novel early event in the biological action of LPA and mediates LPA-stimulated IL-8 secretion in NCM460 cells through a NF-kappaB-dependent pathway. Our results demonstrate, for the first time, the involvement of a member of the PKD family in the production of IL-8, a potent proinflammatory chemokine, by epithelial cells.
The role of epidermal growth factor receptor (EGFR) tyrosine kinase and its downstream targets in the regulation of the transition from the G0/G1 phase into DNA synthesis in response to ANG II has not been previously investigated in intestinal epithelial IEC-18 cells. ANG II induced a rapid and striking EGFR tyrosine phosphorylation, which was prevented by selective inhibitors of EGFR tyrosine kinase activity (e.g., AG-1478) or by broad-spectrum matrix metalloproteinase (MMP) inhibitor GM-6001. Pretreatment of these cells with either AG-1478 or GM-6001 reduced ANG II-stimulated DNA synthesis by approximately 50%. To elucidate the downstream targets of EGFR, we demonstrated that ANG II stimulated phosphorylation of Akt at Ser473, mTOR at Ser2448, p70S6K1 at Thr389, and S6 ribosomal protein at Ser(235/236). Pretreatment with AG-1478 inhibited Akt, p70S6K1, and S6 ribosomal protein phosphorylation. Inhibition of phosphatidylinositol (PI)3-kinase with LY-294002 or mTOR/p70S6K1 with rapamycin reduced [3H]thymidine incorporation by 50%, i.e., to levels comparable to those achieved by addition of either AG-1478 or GM-6001. Utilizing Akt small-interfering RNA targeted to Akt1 and Akt2, Akt protein knockdown dramatically inhibited p70S6K1 and S6 ribosomal protein phosphorylation. In contrast, AG-1478 or Akt gene silencing exerted no detectable inhibitory effect on ANG II-induced extracellular signal-regulated kinase 1/2 phosphorylation in IEC-18 cells. Taken together, our results demonstrate that EGFR transactivation mediates ANG II-stimulated mitogenesis through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway in IEC-18 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.