The recent discovery of cancer stem cells (CSCs) has played a pivotal role in changing our view of carcinogenesis and chemotherapy. Based on this concept, CSCs are responsible for the formation and growth of neoplastic tissue and are naturally resistant to chemotherapy, explaining why traditional chemotherapies can initially shrink a tumor but fails to eradicate it in full, allowing eventual recurrence. Recently, we identified a CSC population in hepatocellular carcinoma (HCC) characterized by their CD133 phenotype. However, the molecular mechanism by which it escapes conventional therapies remains unknown. Here, we examined the sensitivity of these cells to chemotherapeutic agents (doxorubicin and fluorouracil) and the possible mechanistic pathway by which resistance may be regulated. Purified CD133 þ HCC cells isolated from human HCC cell line and xenograft mouse models survived chemotherapy in increased proportions relative to most tumor cells which lack the CD133 phenotype; the underlying mechanism of which required the preferential expression of survival proteins involved in the Akt/PKB and Bcl-2 pathway. Treatment of CD133 þ HCC cells with an AKT1 inhibitor, specific to the Akt/PKB pathway, significantly reduced the expression of the survival proteins that was normally expressed endogenously. In addition, treatment of unsorted HCC cells with both anticancer drugs in vitro significantly enriched the CD133 þ subpopulation.In conclusion, our results show that CD133 þ HCC cells contribute to chemoresistance through preferential activation of Akt/PKB and Bcl-2 cell survival response. Targeting of this specific survival signaling pathway in CD133 þ HCC CSCs may provide a novel therapeutic model for the disease.
Tumor-initiating cells (T-ICs) are a subpopulation of chemoresistant tumor cells that have been shown to cause tumor recurrence upon chemotherapy. Identification of T-ICs and their related pathways are therefore priorities for the development of new therapeutic paradigms. We established chemoresistant hepatocellular carcinoma (HCC) xenograft tumors in immunocompromised mice in which an enriched T-IC population was capable of tumor initiation and self-renewal. With this model, we found CD24 to be upregulated in residual chemoresistant tumors when compared with bulk tumor upon cisplatin treatment. CD24(+) HCC cells were found to be critical for the maintenance, self-renewal, differentiation, and metastasis of tumors and to significantly impact patients' clinical outcome. With a lentiviral-based knockdown approach, CD24 was found to be a functional liver T-IC marker that drives T-IC genesis through STAT3-mediated NANOG regulation. Our findings point to a CD24 cascade in liver T-ICs that may provide an attractive therapeutic target for HCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.