Neonatal HIV-1 infection is associated with rapidly progressive and frequently fatal immune deficiency if left untreated. Immediate institution of antiretroviral therapy (ART), ideally within hours after birth, may restrict irreversible damage to the developing neonatal immune system and possibly provide opportunities for facilitating drug-free viral control during subsequent treatment interruptions. However, the virological and immunological effects of ART initiation within hours after delivery have not been systematically investigated. We examined a unique cohort of neonates with HIV-1 infection from Botswana who started ART shortly after birth and were followed longitudinally for about 2 years in comparison to control infants started on treatment during the first year after birth. We demonstrate multiple clear benefits of rapid antiretroviral initiation, including an extremely small reservoir of intact proviral sequences, a reduction in abnormal T cell immune activation, a more polyfunctional HIV-1–specific T cell response, and an innate immune profile that displays distinct features of improved antiviral activity and is associated with intact proviral reservoir size. Together, these data offer rare insight into the evolutionary dynamics of viral reservoir establishment in neonates and provide strong empirical evidence supporting the immediate initiation of ART for neonates with HIV-1 infection.
BackgroundHepatitis B virus (HBV) is a major global health problem especially in sub-Saharan Africa and in East Asia. Ten hepatitis B virus genotypes have been described that differ by geographic distribution, disease progression, and response to treatment. Escape mutations within the surface open reading frame (ORF) affect HBV antigenicity leading to failures in diagnosis, vaccine and hepatitis B immunoglobulin therapy. However, the molecular characteristics of HBV in Botswana, a highly endemic country, are unknown. We describe the molecular characteristics of HBV and prevalence of escape mutants among HIV/HBV coinfected individuals Botswana.MethodsDNA was extracted from archived plasma samples from 81 HIV/HBV co-infected participants from various clinical studies at the Botswana Harvard AIDS Institute Partnership. A 415 base pair (bp) fragment of the polymerase gene was amplified by semi-nested PCR. In a subset of samples, a 2100 bp fragment was amplified. The PCR product was genotyped using Big Dye sequencing chemistry and the sequences were analysed for genotypes and mutations.ResultsOf the 81 samples included, 70 (86 %) samples were successfully genotyped. Genotype A was found in 56 (80 %) participants, D in 13 (18.6 %), and 1 (1.4 %) was genotype E. Escape mutations previously linked with failure of diagnosis or escaping active vaccination and passive immunoglobulin therapy were detected in 12 (17.1 %) participants at positions 100, 119, 122, 123, 124, 126, 129, 130, 133, 134 and 140 of the S ORF. Genotypes and escape mutations were not significantly associated with aspartate aminotransferase (AST), alanine aminotransferase (ALT) and AST platelet ratio index (APRI).ConclusionGenotypes A, D and E were found in this cohort of HIV coinfected patients in Botswana, consistent with the findings from the sub-Saharan Africa region. Some escape mutations which have previously been associated with diagnosis failure, escaping vaccine and immunoglobulin therapy were also observed and are important in guiding future policies related to vaccine implementation, therapeutic guidelines, and diagnostic guidelines. They are also important for identifying patients who are at an increased risk of disease progression and to choose optimal therapy. Future research should focus on determining the clinical significance of the different HBV genotypes and mutations found in this population.
Background. Hepatitis B virus (HBV) and human immunodeficiency virus (HIV) coinfection has emerged as an important cause of morbidity and mortality. We determined the response to Truvada-based first-line combination antiretroviral therapy (cART) in HIV/HBV-coinfected verus HIV-monoinfected patients in Botswana.Methods. Hepatitis B virus surface antigen (HBsAg), HBV e antigen (HBeAg), and HBV deoxyribonucleic acid (DNA) load were determined from baseline and follow-up visits in a longitudinal cART cohort of Truvada-based regimen. We assessed predictors of HBV serostatus and viral suppression (undetectable HBV DNA) using logistic regression techniques.Results. Of 300 participants, 28 were HBsAg positive, giving an HIV/HBV prevalence of 9.3% (95% confidence interval [CI], 6.3–13.2), and 5 of these, 17.9% (95% CI, 6.1–36.9), were HBeAg positive. There was a reduced CD4+ T-cell gain in HIV/HBV-coinfected compared with HIV-monoinfected patients. Hepatitis B virus surface antigen and HBeAg loss was 38% and 60%, respectively, at 24 months post-cART initiation. The HBV DNA suppression rates increased with time on cART from 54% to 75% in 6 and 24 months, respectively.Conclusions. Human immunodeficiency virus/HBV coinfection negatively affected immunologic recovery compared with HIV-1C monoinfection. Hepatitis B virus screening before cART initiation could help improve HBV/HIV treatment outcomes and help determine treatment options when there is a need to switch regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.