Metal-organic frameworks (MOFs) have been envisioned as alternatives to planar metallic catalysts for solar-to-fuel conversion. This is a direct result of their porous structure and the ability to tailor their optical absorption properties. This study investigates the band gap modulation of Zr-UiO-66 MOFs from both the computational and experimental points of view for three linker designs that include benzenedicarboxylate (BDC), BDC-NO2, and BDC-NH2. Emphasis in this study was aimed at understanding the influence of the bonding between the aromatic ring and the functional group. A ground state density functional theory (DFT) calculation was carried out to investigate the projected density of states and the origins of the modulation. A time-dependent density functional theory (TDDFT) calculation of the hydrogen terminated linkers confirmed the modulation and accounted for the electron charge transfer providing comparable optical band gap predictions to experimental results. Computational results confirmed the hybridization of the carbon-nitrogen bond in conjunction with the donor state resulting from the NH2 functionalization. The NO2 functionalization resulted in an acceptor configuration with marginal modification to the valence band maximum. The largest modulation was BDC-NH2 with a band gap of 2.75 eV, followed by BDC-NO2 with a band gap of 2.93 eV and BDC with a band gap of 3.76 eV. The electron effective mass was predicted from the band structure to be 8.9 me for all MOF designs.
In this study the band gap modulation was studied in response to inorganic ion substitution within a thermally stable UiO-66 metal-organic framework (MOF). A combination of density functional theory prediction in conjunction with experimental predictions were used to map out the complete composition space for three inorganic ions (Zr, Ti, Hf) and three functional groups. The three functional groups include an amino group (NH2), a nitro group (NO2), and a hydrogenated case (H). The smallest band gap that experimentally determined was for a partially substituted UiO-66(Ti5Zr1)-NH2 resulting in 2.60 eV. Theoretical results indicated that Ti can be fully substituted within the lattice resulting in a predicted band gap as low as 1.62 eV. Modulation was a result of a mid-gap state introduced through the amino functionalization and HOMO shifting as a result of increased binding of the Ti-O-C bonds.
Metal-organic frameworks (MOFs) are an attractive substrate for catalytic reactions due to the high area density of reaction sites and the ability to tailor an array of material attributes. This study focuses on a thermally stable crystalline UiO-66(Zr) MOF structure and the modulation of the electronic structure using two strategies to improve the catalytic conversion and selectivity of benzene alcohol to benzedehyate. Those two strategies include the functionalization of the organic struts with branched ligands and manually creating structural defects with unsaturated organic linkers. A combination of computational and experimental results provide evidence of improved catalytic activity of MOFs via these two approaches. Functional groups attached to the main organic strut modify the electronic environment of the photoactive aromatic carbon and thereby decrease the optical band gap by 1eV. Whereas the introduction of structural defects due to the organic linker desaturation provided a shift in the HUMO as a result of the decrease in strut coordination with the inorganic knots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.