SynopsisTwo-dimensional differential systemsare considered, where P and Q are polynomials. The question of interest is the maximum possible numberof limit cycles of such systems in terms of the degree of P and Q. An algorithm is described for determining a so-called focal basis; this can be implemented on a computer. Estimates can then be obtained for the number of small-amplitude limit cycles. The technique is applied to certain cubic systems; a class of examples with exactly five small-amplitude limit cycles is constructed. Quadratic systems are also considered.
We consider second order differential equations of Liénard type:Such equations have been very widely studied and arise frequently in applications. There is an extensive literature relating to the existence and uniqueness of periodic solutions: the paper of Staude[6] is a comprehensive survey. Our interest is in the number of periodic solutions of such equations.
Two-dimensional systemsin which P and Q are cubic polynomials, are considered, and a number of classes with several limit cycles are described. Examples of systems with six small-amplitude limit cycles are given. Other classes of systems with several limit cycles are obtained by considering simultaneous bifurcation from a finite critical point and infinity. Simultaneous bifurcation from several critical points is investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.