The extension k → µ ⊞k of the concept of a free convolution power to the case of non-integer k ≥ 1 was introduced by Bercovici-Voiculescu and Nica-Speicher, and related to the minor process in random matrix theory. In this paper we give two proofs of the monotonicity of the free entropy and free Fisher information of the (normalized) free convolution power in this continuous setting, and also establish an intriguing variational description of this process. * µ ⊞k (s) = k 1/2 R µ (k −1/2 s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.