The molecular nature of many plant disease resistance (R) genes is known; the largest class encodes nucleotide-binding site-leucinerich repeat (NBS-LRR) proteins that are structurally related to proteins involved in innate immunity in animals. Few genes conferring disease susceptibility, on the other hand, have been identified. Recent identification of susceptibility to the fungus Cochliobolus victoriae in Arabidopsis thaliana has enabled our cloning of LOV1, a disease susceptibility gene that, paradoxically, is a member of the NBS-LRR resistance gene family. We found LOV1 mediates responses associated with defense, but mutations in known defense response pathways do not prevent susceptibility to C. victoriae. These findings demonstrate that NBS-LRR genes can condition disease susceptibility and resistance and may have implications for R gene deployment.Cochliobolus victoriae ͉ disease susceptibility ͉ nucleotide binding site-leucine-rich repeat ͉ victorin
The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During resistant responses, the xylem secondary walls thicken within 48 h and the pit diameter decreases, effectively reducing the area of pit membrane exposed for access by bacteria. In susceptible interactions and mock-inoculated controls, the xylem walls do not thicken within 48 h. Xylem secondary wall thickening is developmental and, in untreated 65-day-old rice plants, the size of the pit also is reduced. Activity and accumulation of a secreted cationic peroxidase, PO-C1, were previously shown to increase in xylem vessel walls and lumen. Peptide-specific antibodies and immunogold-labeling were used to demonstrate that PO-C1 is produced in the xylem parenchyma and secreted to the xylem lumen and walls. The timing of the accumulation is consistent with vessel secondary wall thickening. The PO-C1 gene is distinct but shares a high level of similarity with previously cloned pathogen-induced peroxidases in rice. PO-C1 gene expression was induced as early as 12 h during resistant interactions and peaked between 18 and 24 h after inoculation. Expression during susceptible interactions was lower than that observed in resistant interactions and was undetectable after infiltration with water, after mechanical wounding, or in mature leaves. These data are consistent with a role for vessel secondary wall thickening and peroxidase PO-C1 accumulation in the defense response in rice to X. oryzae pv. oryzae.
Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.
The fungus Cochliobolus victoriae causes Victoria blight of oats (Avena sativa) and is pathogenic due to its production of victorin, which induces programmed cell death in sensitive plants. Victorin sensitivity has been identified in Arabidopsis thaliana and is conferred by the dominant gene LOCUS ORCHESTRATING VICTORIN EFFECTS1 (LOV1), which encodes a coiled-coil-nucleotide binding site-leucine-rich repeat protein. We isolated 63 victorin-insensitive mutants, including 59 lov1 mutants and four locus of insensitivity to victorin1 (liv1) mutants. The LIV1 gene encodes thioredoxin h5 (ATTRX5), a member of a large family of disulfide oxidoreductases. To date, very few plant thioredoxins have been assigned specific, nonredundant functions. We found that the victorin response was highly specific to ATTRX5, as the closely related ATTRX3 could only partially compensate for loss of ATTRX5, even when overexpressed. We also created chimeric ATTRX5/ATTRX3 proteins, which identified the central portion of the protein as important for conferring specificity to ATTRX5. Furthermore, we found that ATTRX5, but not ATTRX3, is highly induced in sensitive Arabidopsis following victorin treatment. Finally, we determined that only the first of the two active-site Cys residues in ATTRX5 is required for the response to victorin, suggesting that ATTRX5 function in the victorin pathway involves an atypical mechanism of action.
;Phospholipase D (PLD) has emerged as an important enzyme involved in signal transduction, stress responses, protein trafficking, and membrane metabolism. This report describes the cloning and characterization of three novel PLD genes from rice, designated RPLD3, RPLD4 and RPLD5. The rice PLDs, including the previously isolated RPLD1 and RPLD2, are similar to PLD subfamilies of Arabidopsis. Based on sequence homology and domain conservation, RPLD1 is most similar to the PLDa subfamily of PLDs while RPLD5 most closely resembles the PLDd type. RPLD2, 3 and 4 represent a unique subfamily, although they are most similar to PLDa. RPLD1 is located on chromosome 1, RPLD5 on chromosome 3, and RPLD2, RPLD3, and RPLD4 are tandemly arrayed on chromosome 5. Transcriptional analysis reveals that RPLD1, present in healthy rice vegetative tissues, is induced rapidly but transiently in wounded leaf tissues. RPLD2, also induced by wounding, is present at lower levels but for a more prolonged duration than RPLD1. Immunolocalization with peptide specific antibodies to each of the five PLDs was used to demonstrate that the isoforms have overlapping but distinct patterns of distribution in healthy rice cells. RPLD1 was detected in mesophyll cell wall, membranes, and chloroplasts, whereas RPLD3 and RPLD4 were located predominantly in the chloroplasts. Labeling of RPLD2 and RPLD5 was sparse, and was most concentrated in the secondary walls of xylem (RPLD2) and guard cells (RPLD2 and RPLD5). This combined information on structural features, expression profiles, and cellular localization will assist the basis for dissection of PLD isoform function in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.