Parkinson’s disease (PD) is a slowly progressing neurodegenerative disease with early manifestation of motor signs. Objective measurements of motor signs are of vital importance for diagnosing, monitoring and developing disease modifying therapies, particularly for the early stages of the disease when putative neuroprotective treatments could stop neurodegeneration. Current medical practice has limited tools to routinely monitor PD motor signs with enough frequency and without undue burden for patients and the healthcare system. In this paper, we present data indicating that the routine interaction with computer keyboards can be used to detect motor signs in the early stages of PD. We explore a solution that measures the key hold times (the time required to press and release a key) during the normal use of a computer without any change in hardware and converts it to a PD motor index. This is achieved by the automatic discovery of patterns in the time series of key hold times using an ensemble regression algorithm. This new approach discriminated early PD groups from controls with an AUC = 0.81 (n = 42/43; mean age = 59.0/60.1; women = 43%/60%;PD/controls). The performance was comparable or better than two other quantitative motor performance tests used clinically: alternating finger tapping (AUC = 0.75) and single key tapping (AUC = 0.61).
Mobile technology is opening a wide range of opportunities for transforming the standard of care for chronic disorders. Using smartphones as tools for longitudinally tracking symptoms could enable personalization of drug regimens and improve patient monitoring. Parkinson's disease (PD) is an ideal candidate for these tools. At present, evaluation of PD signs requires trained experts to quantify motor impairment in the clinic, limiting the frequency and quality of the information available for understanding the status and progression of the disease. Mobile technology can help clinical decision making by completing the information of motor status between hospital visits. This paper presents an algorithm to detect PD by analyzing the typing activity on smartphones independently of the content of the typed text. We propose a set of touchscreen typing features based on a covariance, skewness, and kurtosis analysis of the timing information of the data to capture PD motor signs. We tested these features, both independently and in a multivariate framework, in a population of 21 PD and 23 control subjects, achieving a sensitivity/specificity of 0.81/0.81 for the best performing feature and 0.73/0.84 for the best multivariate method. The results of the alternating finger-tapping, an established motor test, measured in our cohort are 0.75/0.78. This paper contributes to the development of a home-based, high-compliance, and high-frequency PD motor test by analysis of routine typing on touchscreens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.