(C(5)H(14)N(2))[(VO)(3)(AsO(4))(HAsO(4))(2)(OH)].3H(2)O behaves as a microporous organically templated compound, with reversible adsorption and desorption of N(2) at 77 K, and as an extremely efficient catalyst that catalyzes selective sulfoxide formation from organic sulfides, under mild conditions.
(C(6)N(2)H(16))(0.5)[(VO)(HAsO(4))F] 1 has been synthesized using mild hydrothermal conditions under autogenous pressure. Above 70 degrees C, this phase has a polymorph with the same chemical composition 2 in which the organic 1,4-diamincyclohexane molecule adopts a different conformation. The crystal structures have been solved from single-crystal X-ray diffraction data. The phases crystallize in the C2/c monoclinic space group with the unit-cell parameters a = 21.065(2) A b = 7.2717(4) A c = 10.396(1) A beta = 104.290(8) degrees for compound 1 and a = 23.025(1) A, b = 7.322(1) A, c = 10.344(1) A and beta = 109.250(6) degrees for compound 2. These phases exhibit a layered inorganic framework, with the template molecule linking the layers via electrostatic interaction and hydrogen bonds. In both phases, the structure is built from secondary building units SBU-4, which are constructed from two [V(2)O(8)F(2)] edge-shared dimeric vanadyl octahedra, connected by the vertices of two hydrogenarsenate (HAsO(4)) tetrahedra. The repetition of this SBU unit gives sheets along the [010] direction. Polymorph 1 exists below 70 degrees C, whereas the limit of thermal stability for 2 is approximately 150 degrees C. Both phases coexist in the temperature range from 80 to -15 degrees C. By means of the DSC technique it has been possible to verify that the temperature of the structural transition is between 70 and 100 degrees C. The diffuse reflectance spectrum of 1 confirms the presence of vanadyl ions, in which the vanadium(IV) cations have a d(1) electronic configuration in a slightly distorted octahedral environment. ESR spectra of both phases are isotropic with mean g values of 1.96 and 1.99 for 1 and 2, respectively. Magnetic measurements for 1 indicate the existence of antiferromagnetic exchange couplings. Both phases are effective and selective catalysts in the oxidation of organic sulfides to sulfoxides and 3,7-dimethylocta-1,6-dien-3-ol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.