In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytic solutions of a particular class of Volterra integral equations (VIEs) are smooth. If the exact solutions are not smooth, however, suitable transformations can be made so that the new VIEs possess smooth solutions. Spline collocation methods with uniform meshes applied to these new VIEs are then shown to be able to yield optimal (global) convergence rates. The general theory is applied to a typical case, i.e. the integral kernels consisting of the singular term (t − s) −½.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.