Numerous bacterial proteins are involved in microbial iron uptake and transport and considerable variation has been found in the uptake schemes used by different bacterial species. However, whether extracting iron from host proteins such as transferrin, lactoferrin or hemoglobin or importing low molecular weight iron-chelating compounds such as heme, citrate or siderophores, Gram-negative pathogenic bacteria typically employ a specific outer membrane receptor, a periplasmic binding protein and two inner membrane associated proteins: a transporter coupled with an ATP-hydrolyzing protein. Often, studies have shown that proteins with similar function but little amino acid sequence homology are structurally related. Elucidation of the structures of the Escherichia coli outer membrane siderophore transport proteins FepA and FhuA have provided the first insights into the conformational changes required for ligand transport through the bacterial outer membrane. The variations between the structures of the prototypical periplasmic ferric binding protein FbpA from Neisseria and Haemophilus influenzae and the unusual E coli periplasmic siderophore binding protein FhuD reveal that the different periplasmic ligand binding proteins exercise distinct mechanisms for ligand binding and release. The structure of the hemophore HasA from Serratia marcescens shows how heme may be extracted and utilized by the bacteria. Other biochemical evidence also shows that the proteins that provide energy for iron transport at the outer membrane, such as the TonB-ExbB-ExbD system, are structurally very similar across bacterial species. Likewise, the iron-sensitive gene regulatory protein Fur is found in most bacteria. To date, no structural information is available for Fur, but the structure for the related protein DxtR has been determined. Together, these three-dimensional structures complement our knowledge of iron transport systems from other pathogenic bacteria, including Pseudomonas aeruginosa, which has a number of homologous iron uptake proteins. More importantly, the current structures for iron transport proteins provide rational starting points for design of novel antimicrobial agents.
The mechanism of action of AFN-1252, a selective inhibitor of Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI), which is involved in fatty acid biosynthesis, was confirmed by using biochemistry, macromolecular synthesis, genetics, and cocrystallization of an AFN-1252-FabI complex. AFN-1252 demonstrated a low propensity for spontaneous resistance development and a time-dependent reduction of the viability of both methicillin-susceptible and methicillin-resistant S. aureus, achieving a >2-log 10 reduction in S. aureus counts over 24 h, and was extremely potent against clinical isolates of S. aureus (MIC 90 , 0.015 g/ml) and coagulase-negative staphylococci (MIC 90 , 0.12 g/ml), regardless of their drug resistance, hospital-or community-associated origin, or other clinical subgroup. AFN-1252 was orally available in mouse pharmacokinetic studies, and a single oral dose of 1 mg/kg AFN-1252 was efficacious in a mouse model of septicemia, providing 100% protection from an otherwise lethal peritoneal infection of S. aureus Smith. A median effective dose of 0.15 mg/kg indicated that AFN-1252 was 12 to 24 times more potent than linezolid in the model. These studies, demonstrating a selective mode of action, potent in vitro activity, and in vivo efficacy, support the continued investigation of AFN-1252 as a targeted therapeutic for staphylococcal infections.
consists of an antibiotic group attached to a hydroxamate siderophore, electron density for the antibiotic portion was not observed. Therefore, this study provides a basis for the rational design of novel bacteriostatic agents, in the form of siderophore-antibiotic conjugates that can act as "Trojan horses," using the hydroxamatetype siderophore uptake system to actively deliver antibiotics directly into targeted pathogens.
BackgroundAlkyl hydroperoxidase activity provides an important antioxidant defense for bacterial cells. The catalytic mechanism requires two peroxidases, AhpC and AhpD, where AhpD plays the role of an essential adaptor protein.ResultsThe crystal structure of a putative AhpD from Pseudomonas aeruginosa has been determined at 1.9 Å. The protein has an all-helical fold with a chain topology similar to a known AhpD from Mycobacterium tuberculosis despite a low overall sequence identity of 9%. A conserved two α-helical motif responsible for function is present in both. However, in the P. aeruginosa protein, helices H3, H4 of this motif are located at the N-terminal part of the chain, while in M. tuberculosis AhpD, the corresponding helices H8, H9 are situated at the C-terminus. Residues 24-62 of the putative catalytic region of P. aeruginosa have a higher sequence identity of 33% where the functional activity is supplied by a proton relay system of five residues, Glu36, Cys48, Tyr50, Cys51, and His55, and one structural water molecule. A comparison of five other related hypothetical proteins from various species, assigned to the alkyl hydroperoxidase D-like protein family, shows they contain the same conserved structural motif and catalytic sequence Cys-X-X-Cys. We have shown that AhpD from P. aeruginosa exhibits a weak ability to reduce H2O2 as tested using a ferrous oxidation-xylenol orange (FOX) assay, and this activity is blocked by thiol alkylating reagents.ConclusionThus, this hypothetical protein was assigned to the AhpD-like protein family with peroxidase-related activity. The functional relationship of specific oligomeric structures of AhpD-like structural family is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.