Disruption of circadian rhythms in mice was associated with accelerated growth of malignant tumors of two types, suggesting that the host circadian clock may play an important role in endogenous control of tumor progression.
Proapoptotic drugs such as docetaxel displayed least toxicity and highest antitumor efficacy following dosing during the circadian rest phase in mice, suggesting that cell cycle and apoptotic processes could be regulated by the circadian clock. In study 1, mouse bone marrow and/or tumor were obtained every 4 h for 24 h in C3H/HeN mice with or without MA13/C mammary adenocarcinoma in order to determine the circadian patterns in cell-cycle phase distribution and BCL-2 anti-apoptotic protein expression. In study 2, mouse bone marrow from B6D2F1 mice was sampled every 3 h for 24 h in order to confirm the BCL-2 rhythm and to study its relation with 24 h changes in the expression of proapoptotic BCL-2-associated X protein (BAX) protein and clock genes mPer2, mBmal1, mClock, and mTim mRNAs. The rhythms in G1-, S- or G2/M-phase cells were shifted in tumor compared with bone marrow. In the tumor, the mean proportion of G2/M-phase cells increased by 75% from late rest to late activity span (P from cosinor = 0.001). No 24 h rhythm was found for BCL-2 in tumors. In contrast to this, in the bone marrow, mean BCL-2 expression varied 2.8-fold in B6D2F1 mice (P=0.025) and 3- or 4.5-fold in tumor-bearing and nontumor-bearing C3H/HeN mice, with a peak during the early rest span (P=0.024 and P<0.001, respectively). BAX varied fivefold during the 24 h span with a major peak occurring near mid-activity (P=0.007). The mean mRNAs of mPer2, mClock, and mBmal1 varied twofold to threefold over the 24 h, with high values during the activity span (P<0.05). In the tumor, the circadian organization in cell-cycle phase distribution was shifted and BCL2 rhythm was ablated. Conversely, a molecular circadian clock likely regulated BCL-2 and BAX expression in the bone marrow, increasing cellular protection against apoptosis during the rest span.
Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is one the most frequent genetic events in human cancer. A cell-based imaging assay that monitored the translocation of the Akt effector protein, Forkhead box O (FOXO), from the cytoplasm to the nucleus was employed to screen a collection of 33,992 small molecules. The positive compounds were used to screen kinases known to be involved in FOXO translocation. Pyrazolopyrimidine derivatives were found to be potent FOXO relocators as well as biochemical inhibitors of PI3K␣. A combination of virtual screening and molecular modeling led to the development of a structure-activity relationship, which indicated the preferred substituents on the pyrazolopyrimidine scaffold. This leads to the synthesis of ETP-45658, which is a potent and selective inhibitor of phosphoinositide 3-kinases and demonstrates mechanism of action in tumor cell lines and in vivo in treated mice.The phosphoinositide 3-kinase (PI3K) 4 /Akt pathway is activated in a variety of solid and non-solid tumors (1) and therefore is considered as a potential intervention point for anticancer therapeutics. Activation of the pathway is frequently caused by mutations in PI3K␣ that enhance its catalytic activity, leading to the generation of phosphatidyl 3,4,5-trisphosphate (PIP3) (2) or by mutations or deletions in the tumor suppressor PTEN (phosphatase and tensin homolog) that result in its loss of function. PTEN antagonizes the activity of PI3K␣ through the dephosphorylation PIP3 (3). In addition, PI3K␣ can be activated by mutations in certain receptor-tyrosine kinases as well as by mutations in the oncogene KRAS (4, 5).The PIP3 generated by activation of PI3K␣ or sustained by the inactivation of PTEN binds to a subset of lipid-binding domains in downstream targets such as the pleckstrin homology (PH) domain of the oncogene Akt (6, 7); thereby, recruiting it to the plasma membrane. Once at the plasma membrane, Akt can be activated (8, 9). When active, Akt phosphorylates several effector molecules including the Forkhead box O (FOXO) transcription factors (10, 11). FOXO proteins are a family of conserved polypeptides that bind to DNA as a monomer and activate the transcription of genes that are involved in numerous biologically relevant processes such as metabolism, differentiation, proliferation, longevity, and apoptosis (12, 13). Akt phosphorylates FOXO proteins at three conserved consensus sites, which leads to conformational changes that facilitate CRM-1-mediated nuclear export (14, 15). Nuclear FOXO proteins function as regulators of transcription, whereas cytoplasmic FOXO proteins are considered inactive. It is well established that FOXO is negatively regulated by various proliferative and antiapoptotic signaling pathways that activate the PI3K/Akt signaling cascade (11). Therefore, we chose to employ a high content imaging approach to monitor the nucleocytoplasmic translocation of a GFP-FOXO3a fusion protein in U2OS cells (U2foxRELOC) (16,17) as the readout for biological inhibition...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.