SummaryAlthough generally considered as beneficial components of dietary fats, polyunsaturated fatty acids (PUFA) have been suspected to compromise maximum lifespan (MLSP) in mammals. Specifically, high amounts of phospholipid PUFAs are thought to impair lifespan due to an increase in the susceptibility of membranes to lipid peroxidation and its damaging effect on cellular molecules. Also, there is evidence from in vitro studies suggesting that highly unsaturated PUFAs elevate basal metabolic rate (BMR). Previous comparative studies in this context were based on small sample sizes, however, and, except for one study, failed to address possible confounding influences of body weight and taxonomic relations between species. Therefore, we determined phospholipid membrane composition in skeletal muscle from 42 mammalian species to test for a relation with published data on MLSP, and with literature data on BMR (30 species). Using statistical models that adjust for the effects of body weight and phylogeny, we found that among mammals, MLSP indeed decreases as the ratio of n− − − − 3 to n− − − − 6 PUFAs increases. In contrast to previous studies, we found, however, no relation between MLSP and either membrane unsaturation (i.e. PUFA content or number of double bonds) or to the very longchain, highly unsaturated docosahexaenoic acid (DHA). Similarly, our data set gave no evidence for any notable relation between muscle phospholipid fatty acid composition and BMR, or MLSP and BMR in mammals. These results contradict the 'membrane pacemaker theory of aging', that is, the concept of a direct link between high amounts of membrane PUFAs, elevated BMR, and thus, impaired longevity.
Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli, depending on the developmental stage and activity of the organism. The most common functional subunits of adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose biology have become clearer in the recent past, much less is known about sex-specific differences in regulation and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands. Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic disorders.
The mouse has rapidly become the mammalian model organism of choice in ageing research due to its relatively short lifespan, the proximity of its genome and physiology to humans, and most importantly due to its genetic pliability and the availability of mutant strains. Mouse models have provided great insights into the ageing process, which in its broadest sense is the progressive decline of body functions over time. In this mini-review, we briefly cover the historical views on the link between ageing and metabolic rate, highlight genetically modified transgenic mouse models of extended lifespan, discuss endocrine pathways linked to senescence and ageing, and then examine pathways by which caloric restriction is postulated to result in longevity.
SUMMARYEuropean hares (Lepus europaeus) in central Europe have high energetic costs of reproduction, mainly due to precocial, rapidly growing young that rely largely on energy-rich milk. Thus, hares in this climate build up large fat stores during winter that are then gradually depleted during the spring-to-autumn breeding season. We hypothesized that the diminishing fat stores of females over the breeding season might affect resource allocation, peak energy assimilation during lactation or the total investment in offspring. Therefore, we measured energy intake, milk quality and milk production throughout lactation in spring, summer and autumn in females raising (size-manipulated) litters with three young each, under a natural photoperiod but at buffered ambient temperatures inside our facility. Over the course of the breeding season, the amount of milk production remained constant, but the fat content of the milk decreased. Hence, total energy transfer to young decreased significantly in autumn. By using undecanoic acid as a tracer of body fat mobilization, we were able to show that milk fat partially originated from maternal fat stores, particularly in spring. The peak sustained energy assimilation rates of lactating females were significantly higher in autumn, due to increased rates of food intake. We conclude that fat stores allow female hares to downregulate energy intake and expenditure early in the breeding season, whereas late breeding forces them to reach peak energy intake levels. Accordingly, we suggest that in hares, peak energy turnover during lactation varies with the availability of fat reserves. Limits to the sustained metabolic rate serve as variable constraints on reproductive investment. Thus, there might be a trade-off in energetic costs to mothers rearing early versus late litters in the year.
Omega fatty acids affect various physiological functions, such as locomotion, cardiac function, and thermogenesis. We highlight evidence from animal models that points to pathways by which specific omega fatty acids exert differential effects. We suggest that optimizing the omega fatty acid composition of tissues involves trade-offs between costs and benefits of specific fatty acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.