In almost all cases, hepatocellular carcinoma (HCC) develops as the endpoint of a sequence that starts with chronic liver injury, progresses to liver cirrhosis, and finally, over years and decades, results in liver cancer. Recently, the role of non-coding RNA such as microRNA (miRNA) has been demonstrated in the context of chronic liver diseases and HCC. Moreover, data from a phase II trial suggested a potential role of microRNAs as therapeutics in hepatitis-C-virus infection, representing a significant risk factor for development of liver cirrhosis and HCC. Despite progress in the clinical management of chronic liver diseases, pharmacological treatment options for patients with liver cirrhosis and/or advanced HCC are still limited. With their potential to regulate whole networks of genes, miRNA might be used as novel therapeutics in these patients but could also serve as biomarkers for improved patient stratification. In this review, we discuss available data on the role of miRNA in the transition from liver cirrhosis to HCC. We highlight opportunities for clinical translation and discuss open issues applicable to future developments.
Background and aims: Due to its involvement in tumor biology as well as tumor-associated stroma cell responses, recent data suggested a potential role of miR-29 as a biomarker for different malignancies. However, its role in neuroendocrine tumors (NETs) is only poorly understood. Methods: We measured circulating levels of miR-29b in 45 patients with NET and compared them to 19 healthy controls. Results were correlated with clinical records. Results: In our cohort of NET patients treated between 2010 and 2019 at our department, miR-29b serum levels were significantly downregulated when compared to healthy control samples. Further, a significant correlation between chromogranin A (CgA) and relative miR-29b levels was noted. However, serum levels of miR-29b were independent of tumor-related factors such as proliferation activity according to Ki-67 index, tumor grading, the TMN stage of malignant tumors, somatostatin receptor expression or clinical features such as functional or non-functional disease and presence of tumor relapse. Finally, in contrast to previous results from other malignancies, miR-29b serum levels were not a significant predictor of overall survival in NET patients. Conclusion: Our data suggest a role for miR-29b serum levels as a previously unrecognized biomarker for diagnosis of NET. However, miR-29 does not allow for predicting tumor stage or patients’ outcome.
Background and aims MicroRNAs (miRNAs) are profoundly involved into the pathophysiology of manifold cancers. Recent data suggested a pivotal role of miRNAs as biomarkers in different biological processes including carcinogenesis. However, their role in neuroendocrine tumors (NETs) is only poorly understood. Methods We determined circulating levels of miR-21 and miR-223 in 45 samples from patients with NET treated between 2010 and 2019 at our department and compared them to healthy controls. Results were correlated with clinical records. Results In the total cohort of Patients with NET, miR-223 presented significantly lower levels compared to healthy control samples. In contrast, levels of miR-21 indicated no significant changes between the two groups. Interestingly, despite being significantly downregulated in all NET patients, concentrations of miR-223 were independent of clinical or histopathological factors such as proliferation activity according to Ki-67 index, tumor grading, TNM stage, somatostatin receptor expression, presence of functional/ non-functional disease or tumor relapse. Moreover, in contrast to data from recent publications analyzing other tumor entities, levels of miR-223 serum levels did not reflect prognosis of patients with NET. Conclusion Lower concentrations of circulating miR-223 rather reflect the presence of NET itself than certain tumor characteristics. The value of miR-223 as a biomarker in NET might be limited to diagnostic, but not prognostic purposes.
IntroductionPancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant neoplasms, as many cases go undetected until they reach an advanced stage. Integrin αvβ6 is a cell surface receptor overexpressed in PDAC. Consequently, it may serve as a target for the development of probes for imaging diagnosis and radioligand therapy. Engineered cystine knottin peptides specific for integrin αvβ6 have recently been developed showing high affinity and stability. This study aimed to evaluate an integrin αvβ6-specific knottin molecular probe containing the therapeutic radionuclide 177Lu for targeting of PDAC.MethodsThe expression of integrin αvβ6 in PDAC cell lines BxPC-3 and Capan-2 was analyzed using RT-qPCR and immunofluorescence. In vitro competition and saturation radioligand binding assays were performed to calculate the binding affinity of the DOTA-coupled tracer loaded with and without lutetium to BxPC-3 and Capan-2 cell lines as well as the maximum number of binding sites in these cell lines. To evaluate tracer accumulation in the tumor and organs, SPECT/CT, biodistribution and dosimetry projections were carried out using a Capan-2 xenograft tumor mouse model.ResultsRT-qPCR and immunofluorescence results showed high expression of integrin αvβ6 in BxPC-3 and Capan-2 cells. A competition binding assay revealed high affinity of the tracer with IC50 values of 1.69 nM and 9.46 nM for BxPC-3 and Capan-2, respectively. SPECT/CT and biodistribution analysis of the conjugate 177Lu-DOTA-integrin αvβ6 knottin demonstrated accumulation in Capan-2 xenograft tumors (3.13 ± 0.63%IA/g at day 1 post injection) with kidney uptake at 19.2 ± 2.5 %IA/g, declining much more rapidly than in tumors.Conclusion177Lu-DOTA-integrin αvβ6 knottin was found to be a high-affinity tracer for PDAC tumors with considerable tumor accumulation and moderate, rapidly declining kidney uptake. These promising results warrant a preclinical treatment study to establish therapeutic efficacy.
Neuroendocrine neoplasia (NEN) comprises heterogeneous tumors that are challenging to diagnose and, especially in cases of poorly differentiated (G3) NEN, are associated with very limited survival. Novel biomarkers allowing an early diagnosis as well as an optimal selection of suitable treatment options are urgently needed to improve the outcome of these patients. Recently, alterations of soluble urokinase-type plasminogen activator receptor (suPAR) serum levels were described in various types of cancers. However, the role of circulating suPAR as a biomarker in patients with NEN is unknown. In this study, we measured suPAR serum levels in a large and well-characterized cohort of 187 patients with NEN (neuroendocrine carcinomas (NEC) n = 30; neuroendocrine tumors (NET), n = 157) as well as 44 healthy controls. suPAR concentrations were significantly elevated in patients compared to controls. However, suPAR concentrations were independent of tumor-related factors such as the proliferation activity according to Ki-67, tumor grading, TNM (TNM classification of malignant tumors) stage, somatostatin receptor expression or clinical features such as functional or nonfunctional disease and the presence of tumor relapse. Interestingly, suPAR concentrations in NET patients were similar when compared to those measured in NEC patients. In contrast to previous results from other malignancies, in our analysis suPAR levels were not a significant predictor of overall survival. In conclusion, our data suggests that suPAR serum concentrations are elevated in NEN patients but do not allow prediction of outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.