Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels, and changes in carbon storage.
Surging wildfires across the globe are contributing to escalating residential losses and have major social, economic, and ecological consequences. The highest losses in the U.S. occur in southern California, where nearly 1000 homes per year have been destroyed by wildfires since 2000. Wildfire risk reduction efforts focus primarily on fuel reduction and, to a lesser degree, on house characteristics and homeowner responsibility. However, the extent to which land use planning could alleviate wildfire risk has been largely missing from the debate despite large numbers of homes being placed in the most hazardous parts of the landscape. Our goal was to examine how housing location and arrangement affects the likelihood that a home will be lost when a wildfire occurs. We developed an extensive geographic dataset of structure locations, including more than 5500 structures that were destroyed or damaged by wildfire since 2001, and identified the main contributors to property loss in two extensive, fire-prone regions in southern California. The arrangement and location of structures strongly affected their susceptibility to wildfire, with property loss most likely at low to intermediate structure densities and in areas with a history of frequent fire. Rates of structure loss were higher when structures were surrounded by wildland vegetation, but were generally higher in herbaceous fuel types than in higher fuel-volume woody types. Empirically based maps developed using housing pattern and location performed better in distinguishing hazardous from non-hazardous areas than maps based on fuel distribution. The strong importance of housing arrangement and location indicate that land use planning may be a critical tool for reducing fire risk, but it will require reliable delineations of the most hazardous locations.
With the potential for worsening fire conditions, discussion is escalating over how to best reduce effects on urban communities. A widely supported strategy is the creation of defensible space immediately surrounding homes and other structures. Although state and local governments publish specific guidelines and requirements, there is little empirical evidence to suggest how much vegetation modification is needed to provide significant benefits. We analysed the role of defensible space by mapping and measuring a suite of variables on modern pre-fire aerial photography for 1000 destroyed and 1000 surviving structures for all fires where homes burned from 2001 to 2010 in San Diego County, CA, USA. Structures were more likely to survive a fire with defensible space immediately adjacent to them. The most effective treatment distance varied between 5 and 20 m (16–58 ft) from the structure, but distances larger than 30 m (100 ft) did not provide additional protection, even for structures located on steep slopes. The most effective actions were reducing woody cover up to 40% immediately adjacent to structures and ensuring that vegetation does not overhang or touch the structure. Multiple-regression models showed landscape-scale factors, including low housing density and distances to major roads, were more important in explaining structure destruction. The best long-term solution will involve a suite of prevention measures that include defensible space as well as building design approach, community education and proactive land use planning that limits exposure to fire.
Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses. Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining > 50% of the variation in severity. Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly shortlived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types. Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire. A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a site but relative dNBR was not. Despite being correlated with fire severity, absolute dNBR showed little or no relationship with important ecosystem responses to wildfire such as shrub resprouting or total vegetative regeneration. These findings point to a critical need for further research on interpreting remote sensing indices as applied to postfire management of these shrublands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.