Objective
To investigate how much movement practice occurred during stroke rehabilitation, and what factors might influence doses of practice provided.
Design
Observational survey of stroke therapy sessions.
Setting
7 inpatient and outpatient rehabilitation sites.
Participants
We observed a convenience sample of 312 physical and occupational therapy sessions for people with stroke.
Intervention
NA
Main Outcome Measures
We recorded numbers of repetitions in specific movement categories and data on potential modifying factors (patient age, side affected, time since stroke, Functional Independence Measure item scores, and years of therapist experience). Descriptive statistics were used to characterize amounts of practice. Correlation and regression analyses were used to determine if potential factors were related to the amount of practice in the two important categories of upper extremity functional movements and gait steps.
Results
Practice of task-specific, functional upper extremity movements occurred in 51% of the sessions that addressed upper limb rehabilitation and the average number of repetitions/session was 32 (95% CI = 20–44). Practice of gait occurred in 84% of sessions that addressed lower limb rehabilitation and the average number of gait steps/session was 357 (95% CI = 296–418). None of the potential factors listed above accounted for significant variance in the amount of practice in either of these two categories.
Conclusions
The amount of practice provided during post-stroke rehabilitation is small compared to animal models. It is possible that current doses of task-specific practice during rehabilitation are not adequate to drive the neural reorganization needed to optimally promote function post stroke.
It has been proposed that somatosensory stimulation in the form of electromyographically triggered neuromuscular electrical stimulation (NMES) to the peripheral nerve can influence functional measures of motor performance in subjects with stroke and can additionally produce changes in cortical excitability. Using a controlled, double-blind design, we studied the effects of intensive (60 h/3 weeks) treatment at home with NMES compared with a sham treatment, applied to the extensor muscles of the hemiplegic forearm to facilitate hand opening in 16 chronic stroke subjects. We investigated improvement in functional use of the hand and change in cortical activation as measured by functional magnetic resonance imaging (fMRI). Following treatment, subjects improved on measures of grasp and release of objects (Box and Block Test and Jebsen Taylor Hand Function Test [JTHFT]: small objects, stacking, heavy cans), isometric finger extension strength, and self-rated Motor Activity Log (MAL): Amount of Use and How Well score. The sham subjects did not improve on any grasp and release measure or self-rated scale, but did improve on isometric finger extension strength. Importantly, however, following crossover, these subjects improved further in the measure of strength, grasp and release (Box and Block [JTHFT]: page turning), and self-rated MAL: Amount of Use score and How Well score. Using fMRI and a finger-tracking task, an index of cortical intensity in the ipsilateral somatosensory cortex increased significantly from pre-test to post-test following treatment. Cortical activation, as measured by voxel count, did not change. These findings suggest that NMES may have an important role in stimulating cortical sensory areas allowing for improved motor function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.