SummaryMycothiol, MSH or 1 D -myo -inosityl 2-( N -acetyl-Lcysteinyl)amido-2-deoxy-a -D -glucopyranoside, is an unusual conjugate of N -acetylcysteine (AcCys) with 1 D -myo -inosityl 2-acetamido-2-deoxy-a a a a -D -glucopyranoside (GlcN-Ins), and is the major low-molecularmass thiol in mycobacteria. Mycothiol has antioxidant activity as well as the ability to detoxify a variety of toxic compounds. Because of these activities, MSH is a candidate for protecting Mycobacterium tuberculosis from inactivation by the host during infections as well as for resisting antituberculosis drugs. In order to define the protective role of MSH for M. tuberculosis , we have constructed an M. tuberculosis mutant in Rv1170, one of the candidate MSH biosynthetic genes. During exponential growth, the Rv1170 mutant bacteria produced ª ª ª ª 20% of wild-type levels of MSH. Levels of the Rv1170 substrate, GlcNAc-Ins, were elevated, whereas those of the product, GlcN-Ins, were reduced. This establishes that the Rv1170 gene encodes for the major GlcNAc-Ins deacetylase activity (termed MshB) in the MSH biosynthetic pathway of M. tuberculosis. The Rv1170 mutant grew poorly on agar media lacking catalase and oleic acid, and had heightened sensitivities to the toxic oxidant cumene hydroperoxide and to the antibiotic rifampin. In addition, the mutant was more resistant to isoniazid, suggesting a role for MSH in activation of this prodrug. These data indicate that MSH contributes to the protection of M. tuberculosis from oxidants and influences resistance to two first-line antituberculosis drugs.
Mycothiol is the predominant thiol in most actinomycetes, including Mycobacterium tuberculosis, and appears to play a role analogous to glutathione, which is not found in these bacteria. The enzymes involved in mycothiol biosynthesis are of interest as potential targets for new drugs directed against tuberculosis. In this work we describe the isolation and characterization of a Tn 5 transposon mutant of Mycobacterium smegmatis that is blocked in the production of mycothiol and accumulates its precursor, 1 D-myo-inosityl 2- L-cysteinylamido-2-deoxy-alpha-D-glucopyranoside (Cys-GlcN-Ins). Cys-GlcN-Ins isolated from this mutant was used to assay for acetyl-CoA:Cys-GlcN-Ins acetyltransferase (mycothiol synthase, MshD) activity, which was found in wild-type cells, but not in the mutant. Sequencing outward of the DNA of the mutant strain from the site of insertion permitted identification of the mshD gene in the M. smegmatis genome, as well as the orthologous gene Rv0819 in the M. tuberculosis genome. Cloning and expression of mshD from M. tuberculosis (Rv0819) in Escherichia coli gave a transformant with MshD activity, demonstrating that Rv0819 is the mshD mycothiol biosynthesis gene.
Mycothiol is the major thiol present in most actinomycetes and is produced from the pseudodisaccharide 1D-myo-inosityl 2-acetamido-2-deoxy-␣-D-glucopyranoside (GlcNAc-Ins). A transposon mutant of Mycobacterium smegmatis shown to be GlcNAc-Ins and mycothiol deficient was sequenced to identify a putative glycosyltransferase gene designated mshA. The ortholog in Mycobacterium tuberculosis, Rv0486, was used to complement the mutant phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.