BackgroundTrypanosoma cruzi, the agent of Chagas disease, is currently recognized as a complex of six lineages or Discrete Typing Units (DTU): TcI-TcVI. Recent studies have identified a divergent group within TcI - TcIDOM. TcIDOM. is associated with a significant proportion of human TcI infections in South America, largely absent from local wild mammals and vectors, yet closely related to sylvatic strains in North/Central America. Our aim was to examine hypotheses describing the origin of the TcIDOM genotype. We propose two possible scenarios: an emergence of TcIDOM in northern South America as a sister group of North American strain progenitors and dispersal among domestic transmission cycles, or an origin in North America, prior to dispersal back into South American domestic cycles. To provide further insight we undertook high resolution nuclear and mitochondrial genotyping of multiple Central American strains (from areas of México and Guatemala) and included them in an analysis with other published data.FindingsMitochondrial sequence and nuclear microsatellite data revealed a cline in genetic diversity across isolates grouped into three populations: South America, North/Central America and TcIDOM. As such, greatest diversity was observed in South America (Ar = 4.851, π = 0.00712) and lowest in TcIDOM (Ar = 1.813, π = 0.00071). Nuclear genetic clustering (genetic distance based) analyses suggest that TcIDOM is nested within the North/Central American clade.ConclusionsDeclining genetic diversity across the populations, and corresponding hierarchical clustering suggest that emergence of this important human genotype most likely occurred in North/Central America before moving southwards. These data are consistent with early patterns of human dispersal into South America.
The interaction of Rhodnius prolixus digestive enzymes with Trypanosoma cruzi could be important for parasite survival. We report herein the complete sequence of the messenger of a cathepsin L-like molecule (RpCat). The cDNA has 5'- and 3'- end UTRs and a methionine codon that corresponds likely to a translation initiation codon. In the deduced amino acid sequence, a region corresponding to an ERFININ domain, diagnostic of L-cathepsins, and a possible pro-peptide cleavage site were observed. At the C-terminus, a nine-amino acid sequence, almost identical to a secretion signal of human cathepsin L was found. RpCat messenger was expressed in intestines of R. prolixus adults, and from 1st to 4th but not in 5th instar nymph stages. In a similarity analysis, RpCat was grouped with L cathepsins forming a clear group separate of the B cathepsins.
The Asian tiger mosquito Aedes albopictus is currently the most invasive vector species, with a widespread global distribution. Aedes albopictus is the potential vector of diverse arboviruses, including Zika and dengue. This study updated the ecological niche model of Ae. albopictus and inferred the potential distribution of natural Wolbachia infections in Ae. albopictus in México. The ecological niche models were constructed based on diverse model settings to better estimate the potential distributions and uncertainty indices of both Ae. albopictus and its natural Wolbachia infections in México. The distribution of Ae. albopictus covered the states across Northern México, the Gulf of México, the Pacific Coast of México, Central México, and the southeast of México. The ecological niche model of the natural Wolbachia infections in Ae. albopictus populations anticipated occurrence of natural Wolbachia infections in the southeast of México, the Chiapas border with Guatemala, and Veracruz. These results can be used to prioritize vector surveillance and control programs in México for strategic and future decision-making; however, it is still necessary to establish active surveillance programs to assess model predictions based on independent sampling of Ae. albopictus from different invasion zones in México. Finally, vector surveillance should also screen the natural Wolbachia infections in Ae. albopictus to validate Wolbachia predictions across México, particularly in the southeast of México.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.