Bone morphogenetic proteins (BMPs) are potent inhibitors of myoblast differentiation and inducers of bone formation both in vivo and in vitro. Expression of Id1, a negative regulator of basic helix-loop-helix transcription factors, is up-regulated by BMPs and contributes to the antimyogenic effects of this family of cytokines. In this report, we have identified a specific BMP-2 immediate early response enhancer in the human Id1 gene. Transcriptional activation of the enhancer was increased by overexpression of BMP-responsive Smads, and Smad4 and was completely abrogated in Smad4-deficient cells. Deletion analysis demonstrates that the responsive region is composed of two separate DNA binding elements, a set of overlapping GC boxes, which bind BMP-regulated Smads upon BMP stimulation, and three repeats of CAGAC boxes. Gel shift and oligonucleotide pull-down assays demonstrated that these two types of motifs were capable of binding their corresponding Smads. However, deletion or mutation of either DNA binding element was nonadditive, since disruption of either GC or CAGAC boxes resulted in complete or severe loss of BMP-2 responsiveness. These data suggest the simultaneous requirement of two independent DNA binding elements to allow functional cooperativity of BMP-regulated Smads and Smad4 in BMP-activated gene promoters.
The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1-deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.
Bone morphogenetic proteins (BMPs) transdifferentiate C2C12 cells from the myogenic to the osteogenic lineage. In this work we examine the role of the phosphatidylinositol 3-kinase/p70 S6 kinase (PI3K/p70 S6K) and p38 mitogen-activated protein kinase (p38 MAPK) cascades in the osteogenic effects of BMP-2. BMP-2 stimulated both cascades transiently (maximal at 1 h and decreasing thereafter). In contrast, BMP-2 had no effect on p42/p44 MAPK (Erks) stimulation. We also analyzed the effects of selective inhibitors of these pathways on the expression of osteogenic markers. Inhibitors of p38 MAPK (SB203580) or the PI3K/p70 S6K pathway (Ly294002 and rapamycin) not only fail to block the osteoblast phenotype induced by BMP-2, measured as induction of Cbfa1 expression and transcriptional activity, but also potentiate the effect of BMP-2 on late osteoblast markers, such as alkaline phosphatase activity and osteocalcin expression. These data suggest that, in contrast to their positive effect on myogenic differentiation, PI3K/p70 S6K and p38 MAPK cascades have a negative role in osteoblast differentiation. ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Bone morphogenetic proteins (BMPs) constitute a family of multifunctional growth and differentiation factors structurally related to transforming growth factor-. BMPs were first identified by their osteoinductive effects, inducing ectopic bone formation when implanted in skeletal muscle, and have an important role as regulators of skeletal development in vivo. In vitro, BMP-2 is able to transdifferentiate myogenic C2C12 cells into the osteoblastic phenotype. In this report, we show that the osteoinductive effects of BMP-2 in C2C12 cells are mediated by bone morphogenetic protein receptor type-IA in combination with both activin receptor type II and bone morphogenetic protein receptor type II. We also analyzed the expression levels of nuclear protooncogenes to understand early transcriptional events induced by BMP-2. We show that junB is an immediate early gene induced by BMP-2 and transforming growth factor-. BMP-2 induces transcriptional activation of JunB expression as early as 30 min after ligand addition, reaching maximal levels after 90 min. Increase of JunB mRNA correlates with a higher AP-1 binding activity. Furthermore, ectopic overexpression of JunB is sufficient to inhibit expression of myoblast differentiation markers in C2C12 cells. These data, taken together, show the involvement of JunB in the early steps of inhibition of myogenic differentiation induced by transforming growth factor- family members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.