Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f(7) configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium's only available isotope, (249)Bk, has hindered in-depth studies of the element's coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison. We demonstrate that berkelium's complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium's multiconfigurational ground state.
The reaction of Bk(OH) with iodate under hydrothermal conditions results in the formation of Bk(IO) as the major product with trace amounts of Bk(IO) also crystallizing from the reaction mixture. The structure of Bk(IO) consists of nine-coordinate Bk cations that are bridged by iodate anions to yield layers that are isomorphous with those found for Am, Cf, and with lanthanides that possess similar ionic radii. Bk(IO) was expected to adopt the same structure as M(IO) (M = Ce, Np, Pu), but instead parallels the structural chemistry of the smaller Zr cation. Bk-O and Bk-O bond lengths are shorter than anticipated and provide further support for a postcurium break in the actinide series. Photoluminescence and absorption spectra collected from single crystals of Bk(IO) show evidence for doping with Bk in these crystals. In addition to luminescence from Bk in the Bk(IO) crystals, a broad-band absorption feature is initially present that is similar to features observed in systems with intervalence charge transfer. However, the high-specific activity of Bk (t = 320 d) causes oxidation of Bk and only Bk is present after a few days with concomitant loss of both the Bk luminescence and the broadband feature. The electronic structure of Bk(IO) and Bk(IO) were examined using a range of computational methods that include density functional theory both on clusters and on periodic structures, relativistic ab initio wave function calculations that incorporate spin-orbit coupling (CASSCF), and by a full-model Hamiltonian with spin-orbit coupling and Slater-Condon parameters (CONDON). Some of these methods provide evidence for an asymmetric ground state present in Bk that does not strictly adhere to Russel-Saunders coupling and Hund's Rule even though it possesses a half-filled 5f shell. Multiple factors contribute to the asymmetry that include 5f electrons being present in microstates that are not solely spin up, spin-orbit coupling induced mixing of low-lying excited states with the ground state, and covalency in the Bk-O bonds that distributes the 5f electrons onto the ligands. These factors are absent or diminished in other f ions such as Gd or Cm.
Th(VO3)2(SeO3) and Ln(VO3)2(IO3) (Ln = Ce, Pr, Nd, Sm, and Eu) have been prepared and characterized. Surprisingly, these compounds are isotypic and rather extreme examples of aliovalent substitution (Th(IV)vs. Ln(III); Se(IV)O3(2-)vs. I(V)O3(-)) are possible in this structure type.
A new approach to fused helicenes is reported, where varied substituents are readily incorporated in the extended aromatic frame. From the alkynyl precursor, the final helical compounds are obtained under mild conditions in a two-step process, in which the final C-C bond is formed via a photochemical cyclization/ dehydroiodination sequence. The distortion of the π-system from planarity leads to unusual packing in the solid state. Computational analysis reveals that substituent incorporation perturbs geometries and electronic structures of these nonplanar aromatics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.