Developing highly efficient photocatalysts for artificial photosynthesis is one of the grand challenges in solar energy conversion. Among advanced photoactive materials, conjugated porous polymers (CPPs) possess a powerful combination of high surface areas, intrinsic porosity, cross‐linked nature, and fully π‐conjugated electronic systems. Here, based on these fascinating properties, organic–inorganic hybrid heterostructures composed of CPPs and TiO2 for the photocatalytic CO2 reduction and H2 evolution from water are developed. The study is focused on CPPs based on the boron dipyrromethene (BODIPY) and boron pyrrol hydrazine (BOPHY) families of compounds. It is shown that hybrid photocatalysts are active for the conversion of CO2 mainly into CH4 and CO, with CH4 production 4 times over the benchmark TiO2. Hydrogen evolution from water surpassed by 37.9‐times that of TiO2, reaching 200 mmol gcat−1 and photonic efficiency of 20.4% in the presence of Pt co‐catalyst (1 wt% Pt). Advanced photophysical studies, based on time‐resolved photoluminescence and transient absorption spectroscopy, reveal the creation of a type II heterojunction in the hybrids. The unique interfacial interaction between CPPs and TiO2 results in longer carriers’ lifetimes and a higher driving force for electron transfer, opening the door to a new generation of photocatalysts for artificial photosynthesis.
Molecular shuttles are the basis of some of the most advanced synthetic molecular machines. In these devices a macrocycle threaded onto a linear component shuttles between different portions of the thread in response to external stimuli. Here, we use optical tweezers to measure the mechanics and dynamics of individual molecular shuttles in aqueous conditions. Using DNA as a handle and as a single molecule reporter, we measure thousands of individual shuttling events and determine the force-dependent kinetic rates of the macrocycle motion and the main parameters governing the energy landscape of the system. Our findings could open avenues for the real-time characterization of synthetic devices at the single molecule level, and provide crucial information for designing molecular machinery able to operate under physiological conditions.
Abstractα‐Allenols were catalytically transformed into dihydrofurans in the presence of platinum dichloride. Notably, using platinum dichloride along with silver triflate as the catalytic system, α,β‐unsaturated ketones were obtained. Therefore, the role of the silver salt may not just consist in the activation of the platinum precatalyst.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.