The Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnIIITE-2-PyP5+ (AEOL-10113) has proven effective in treating oxidative stress-induced conditions including cancer, radiation damage, diabetes, and central nervous system trauma. The ortho cationic pyridyl nitrogens of MnTE-2-PyP5+ are essential for its high antioxidant potency. The exceptional ability of MnIIITE-2-PyP5+ to dismute O2.- parallels its ability to reduce ONOO- and CO3-. Decreasing levels of these species are considered its predominant mode of action, which may also involve redox regulation of signaling pathways. Recently, Ferrer-Sueta at al. (Free Radic. Biol. Med. 41:503-512; 2006) showed, with submitochondrial particles, that>or=3 microM MnIIITE-2-PyP5+ was able to protect components of the mitochondrial electron transport chain from peroxynitrite-mediated damage. Our study complements their data in showing, for the first time that micromolar mitochondrial concentrations of MnIIITE-2-PyP5+ are obtainable in vivo. For this study we have developed a new and sensitive method for MnIIITE-2-PyP5+ determination in tissues. The method is based on the exchange of porphyrin Mn2+ with Zn2+, followed by the HPLC/fluorescence detection of ZnIITE-2-PyP4+. At 4 and 7 h after a single 10 mg/kg intraperitoneal administration of MnIIITE-2-PyP5+, the mice (8 in total) were anesthetized and perfused with saline. Mitochondria were then isolated by the method of Mela and Seitz (Methods Enzymol.55:39-46; 1979). We found MnIIITE-2-PyP5+ localized in heart mitochondria to 2.95 ng/mg protein. Given the average value of mitochondrial volume of 0.6 microL/mg protein, the calculated MnIIITE-2-PyP5+ concentration is 5.1 microM, which is sufficient to protect mitochondria from oxidative damage. This study establishes, for the first time, that MnIIITE-2-PyP5+, a highly charged metalloporphyrin, is capable of entering mitochondria in vivo at levels sufficient to exert there its antioxidant action; such a result encourages its development as a prospective therapeutic agent.
Target-derived neurotrophin growth factors have significant effects on the development and maintenance of the mammalian somatosensory system. Studies of transgenic mice that overexpress neurotrophins NGF and neurotrophin 3 (NT-3) at high levels in skin have shown increased sensory neuron number and enhanced innervation of specific sensory ending types. The effects of two other members of this family, BDNF and NT-4, on sensory neuron development are less clear. This study examined the role of brain-derived neurotrophic factor (BDNF) using transgenic mice that overexpress BDNF in epithelial target tissues of sensory neurons. BDNF transgenic mice had an increase in peripheral innervation density and showed selective effects on neuron survival. Neuron number in trigeminal ganglia, DRG, and SCG were unchanged, although a 38% increase in neurons comprising the placode-derived nodose-petrosal complex occurred. BDNF transgenic skin showed notable enhancement of innervation to hair follicles as detected by PGP9.5 immunolabeling. In nonhairy plantar skin, Meissner corpuscle sensory endings were larger, and the number of Merkel cells with associated innervation was increased. In trigeminal ganglia, neurons expressing trkB receptor were increased threefold, whereas trkA-positive neurons doubled. Analysis of trkB by Northern, reverse transcription-PCR, and Western assays indicated a modest increase in the expression of the T1 truncated receptor and preferential distribution to the periphery. These data indicate that skin-derived BDNF does not enhance survival of cutaneous sensory neurons, although it does promote neurite innervation of specific sites and sensory end organs of the skin.
Mn(III)tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP 5+ , a potent catalytic superoxide and peroxynitrite scavenger, has been beneficial in several oxidative stress-related disease thus far examined. Pharmacokinetic studies are essential for the better assessment of the therapeutic potential of MnTE-2-PyP 5+ and similar compounds, as well as for the modulation of their bioavailability and toxicity. Despite high hydrophilicity, this drug entered mitochondria after single 10 mg/kg intraperitoneal injection at levels high enough (5.1 µM; 2.95 ng/mg protein) to protect it against superoxide/peroxynitrite damage. Utilizing the same analytical approach, which involves the reduction of MnTE-2-PyP 5+ , followed by the exchange of Mn 2+ with Zn 2+ , and HPLC/fluorescence detection of ZnTE-2-PyP 4+ , we measured levels of MnTE-2-PyP 5+ in mouse plasma, liver, kidney, lung, heart, spleen, and brain over a period of 7 days after a single intraperitoneal injection of 10 mg/ kg. Two B6C3F1 female mice per time point were used. The pharmacokinetic profile in plasma and organs was complex; thus a non-compartmental approach was utilized to calculate the area under the curve (AUC), c max , t max , and drug elimination half-time (t 1/2 ). In terms of levels of MnTE-2-PyP 5+ found, the organs can be classified into 3 distinct groups: (1) high levels: kidney, liver, and spleen; (2) moderate levels: lung and heart; and (3) low levels: brain. The maximal levels in plasma, kidney, spleen, lung, and heart are reached within first 45 minutes whereas in case of liver a prolonged absorption phase was observed with the maximal concentration reached at 8 hours. Moreover, accumulation of the drug in brain continues beyond time of the experiment (7 days) and is likely driven by the presence of negatively charged phospholipids. For tissues other than brain, a slow elimination phase (single exponential decay, t 1/2 = 60 to 135 hours) is observed. The calculated pharmacokinetic parameters will be used to design optimal dosing regimens in future preclinical studies utilizing this and similar compounds.
Chemotherapy-induced cognitive impairment (CICI) is now widely recognized as a real and too common complication of cancer chemotherapy experienced by an ever-growing number of cancer survivors. Previously, we reported that doxorubicin (Dox), a prototypical reactive oxygen species (ROS)-producing anti-cancer drug, results in oxidation of plasma proteins, including apolipoprotein A-I (ApoA-I) leading to tumor necrosis factor-alpha (TNF-α)-mediated oxidative stress in plasma and brain. We also reported that co-administration of the antioxidant drug, 2-mercaptoethane sulfonate sodium (MESNA), prevents Dox-induced protein oxidation and subsequent TNF-α elevation in plasma. In this study, we measured oxidative stress in both brain and plasma of Dox-treated mice both with and without MESNA. MESNA ameliorated Dox-induced oxidative protein damage in plasma, confirming our prior studies, and in a new finding led to decreased oxidative stress in brain. This study also provides further functional and biochemical evidence of the mechanisms of CICI. Using novel object recognition (NOR), we demonstrated the Dox administration resulted in memory deficits, an effect that was rescued by MESNA. Using hydrogen magnetic resonance imaging spectroscopy (H1-MRS) techniques, we demonstrated that Dox administration led to a dramatic decrease in choline-containing compounds assessed by (Cho)/creatine ratios in the hippocampus in mice. To better elucidate a potential mechanism for this MRS observation, we tested the activities of the phospholipase enzymes known to act on phosphatidylcholine (PtdCho), a key component of phospholipid membranes and a source of choline for the neurotransmitter, acetylcholine (ACh). The activities of both phosphatidylcholine-specific phospholipase C (PC-PLC) and phospholipase D were severely diminished following Dox administration. The activity of PC-PLC was preserved when MESNA was co-administered with Dox; however, PLD activity was not protected. This study is the first to demonstrate the protective effects of MESNA on Dox-related protein oxidation, cognitive decline, phosphocholine (PCho) levels, and PC-PLC activity in brain and suggests novel potential therapeutic targets and strategies to mitigate CICI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.