9,10-Phenanthrenequinone and acenaphthenequinone are shown to act as simple redox-dependent receptors toward aromatic ureas in CH(2)Cl(2) and DMF. Reduction of the o-quinones to their radical anions greatly increases the strength of hydrogen bonding between the quinone carbonyl oxygens and the urea N-hydrogens. This is detected by large positive shifts in the redox potential of the quinones with no change in electrochemical reversibility upon addition of urea guests. Cyclic voltammetric studies with a variety of possible guests show that the effect is quite selective. Only guests with two strong hydrogen donors, such as O-H bonds or amide N-H bonds, that are capable of simultaneously interacting with both carbonyl oxygens give large shifts in the redox potential of the quinones. The electronic character and conformational preference of the guest are also shown to significantly affect the magnitude of the observed potential shift. In the presence of strong proton donors the electrochemistry of the quinone becomes irreversible indicating that proton transfer has taken place. Experiments with compounds of different acidity show that the pK(a) of the protonated quinone radical is about 15 on the DMSO scale, >4 pK(a) units smaller than that of 1,3-diphenylurea. This is further proof that hydrogen bonding and not proton transfer is responsible for the large potential shifts observed with this and similar guests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.