Computational fluid dynamics is employed to predict the aerodynamic properties of the prototypical trailing-edge control surfaces for a small, regional transport, commercial aircraft. The virtual experiments are performed at operational flight conditions, by resolving the mean turbulent flow field around a realistic model of the whole aircraft. The Reynolds-averaged Navier–Stokes approach is used, where the governing equations are solved with a finite volume-based numerical method. The effectiveness of the flight control system, during a hypothetical conceptual pre-design phase, is studied by conducting simulations at different angles of deflection, and examining the variation of the aerodynamic loading coefficients. The proposed computational modeling approach is verified to have good practical potential, also compared with reference industrial data provided by the Leonardo Aircraft Company.
The flow over alternating roughness strips oriented normally to the mean stream is studied using wall-modeled large-eddy simulations (WMLES) and improved delayed detached-eddy simulations (IDDES) (a hybrid method solving the Reynolds-averaged Navier–Stokes (RANS) equations near the wall and switching to large-eddy simulations (LES) in the core of the flow). The calculations are performed in an open-channel configuration. Various approaches are used to account for roughness by either modifying the wall boundary condition for WMLES or the model itself for IDDES or by adding a drag forcing term to the momentum equations. By comparing the numerical results with the experimental data, both methods with both roughness modifications are shown to reproduce the non-equilibrium effects, but noticeable differences are observed. The WMLES, although affected by the underlying equilibrium assumption, predicts the return to equilibrium of the skin friction in good agreement with the experiments. The velocity predicted by the IDDES does not have memory of the upstream conditions and recovers to the equilibrium conditions faster. Memory of the upstream conditions appears to be a critical factor for the accurate computational modeling of this flow.
The effectiveness of prototypical control surfaces for a modern regional transport commercial aircraft is examined by means of numerical simulations. The virtual experiments are performed in operational conditions by resolving the mean turbulent flow field around a suitable model of the whole aircraft. The Reynolds-averaged Navier-Stokes modelling approach is used, where the governing equations are solved with a finite volume-based numerical technique. The aerodynamic performance of the flight control surfaces, during an hypothetical conceptual design phase, is evaluated by conducting simulations at different deflections. The present computational modelling approach is verified to have good practical potential by making a comparison with reference industrial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.