Although SEDI antibody does not necessarily label all misfolded forms of SOD1, these findings show a distinct difference between fALS1 and sALS, and do not support that monomer/misfolded SOD1 is a common disease entity linking all types of ALS. This is important to our understanding of ALS disease pathogenesis and to considerations of the applicability of using therapeutics that target misfolded SOD1 to non-SOD1-related cases. Ann Neurol 2009;66:75-80.
The presence of lower molecular weight species comprising the C-terminal region of TAR DNA-binding protein 43 (TDP-43) is a characteristic of TDP-43 proteinopathy in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we have identified a novel splice variant of TDP-43 that is upregulated in ALS and generates a 35-kDa N-terminally truncated species through use of an alternate translation initiation codon (ATGMet85), denoted here as Met85-TDP-35. Met85-TDP-35 expressed ectopically in human neuroblastoma cells exhibited reduced solubility, cytoplasmic distribution, and aggregation. Furthermore, Met85-TDP-35 sequestered full-length TDP-43 from the nucleus to form cytoplasmic aggregates. Expression of Met85-TDP-35 in primary motor neurons resulted in the formation of Met85-TDP-35-positive cytoplasmic aggregates and motor neuron death. A neo-epitope antibody specific for Met85-TDP-35 labeled the 35-kDa lower molecular weight species on immunoblots of urea-soluble extracts from ALS-FTLD disease-affected tissues and co-labeled TDP-43-positive inclusions in ALS spinal cord sections, confirming the physiological relevance of this species. These results show that the 35-kDa low molecular weight species in ALS-FTLD can be generated from an abnormal splicing event and use of a downstream initiation codon and may represent a mechanism by which TDP-43 elicits its pathogenicity.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-015-1412-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.