Chamaedorea bartlingiana is a dioecious palm that grows in the cloud forest understories of the Venezuelan Andes. Age and sexual differences in phenology and reproductive patterns were studied in labelled individuals of all age categories. This species has long-lived leaves and low leaf production, both characteristic of understory plants. Growth rates are lower in juveniles than in adults and in females than in males, as in other palms. Male and female individuals show different reproductive patterns. Male inflorescences are always produced at the same rate and the probability of surviving until anthesis is constant. Females produce reproductive buds at the same rate as males, but these buds have a 35% probability of becoming a ripe infrutescence if the plant has infrutescences already growing, and 70% if it does not. This pattern and the slow growth of inflorescences (1 year for males from bud to flowers, 2 years for females from bud to ripe fruits) cause a pluriannual reproductive pattern at the population level. Field germination does not follow this pattern, but shows one annual peak probably related to environmental conditions.
To study the acclimation responses of the leaves of saplings of six tree species when changed to low or high levels of irradiance, we carried out a light exposure experiment. Species representative of contrasting shade tolerance groups were identified across a light gradient in the understorey of a Venezuelan Andean cloud forest. Measured traits included gas exchange, chlorophyll fluorescence, and morphoanatomical, biochemical and optical properties. Saplings were grown for 6 months in a shade-house receiving 20% photosynthetic photon flux (PPF) of full sunlight. Plant samples were then moved to shade-houses receiving low PPF (4%) or high PPF (65%). A factorial model (species × PPF), with repeated measurements (0, 15 and 120 days) was designed. Our results showed that morphological and anatomical traits were more plastic to PPF changes than photosynthetic traits. All species were susceptible to photoinhibition (15 days): shade-intolerant species showed dynamic photoinhibition (120 days), whereas shade-tolerant species presented chronic photoinhibition and the consequent inability to increase C assimilation rates under high PPF. The partially shade-tolerant species showed mixed responses; nonetheless, they exhibited larger adjustments in morphoanatomical and optical properties. Thus the acclimation responses of these species when subject to contrasting light conditions could help to explain their distribution along the light gradient in the understorey.
Cloud forest vegetation structure and composition were studied in the Venezuelan Andes at three sites in Mérida State. Although the sites are within 10 to 30 km of each other, climatic, geologic and topographic differences are remarkable. The main purpose of the study was to determine the relationship of specific environmental variables to forest vegetation characteristics, including basal area, tree height, density and diversity, and leaf area index (LAI). At 51 plots, all trees' diameter at breast height >10 cm were recorded and identified. Although the environment at the three sites is distinctive, the tree species composition of the most abundant species was very similar. None of the measured environment variables were significantly correlated with the measured vegetation structure variables, except LAI, which was correlated with slope orientation; LAI showed higher values at southfacing plots. Tree height was relatively uniform, while basal area was highly variable and reached very high values. Stem densities were in the range reported elsewhere in cloud forests. Multivariate analysis using structure or composition data shows segregation of the plots by site. Principal component analyses by site indicate a minor impact of environmental factors on forest variables. At each site, a particular group of species are correlated with the ordination axes. We conclude that species pools and forest dynamics add to the complexity of the structure of the studied cloud forests.
Light environment in the understory of an Andean cloud forest: canopy structure and climatic seasonality. The light environment in the understory of cloud forests is highly heterogeneous and determined by species composition, canopy structure, site conditions, and seasonality. This study was carried out at San Eusebio cloud forest, Venezuela (2 300-2 500 masl). The impact of canopy structure variations on understory light availability was estimated in the dry (December-February) and rainy (March-November) seasons, in sites under continuous canopy cover and gaps of various sizes. Hemispherical photographs were taken to estimate the percentage of canopy openness, leaf area index, percentages of transmitted direct and diffuse light, and duration and frequency of sunflecks. A light index was calculated from the relative proportions of direct and diffuse light transmitted to the understory. For most variables, there were significant differences between seasons, as well as among different gap sizes and under closed canopy. The light index was low (0.25 to 26 of a maximum = 100), even for the largest gaps, indicating a highly shaded light environment, especially beneath closed canopy in the rainy season. Patterns and interactions among factors were analyzed (gaps vs. continuous canopy, gap sizes, location within the gaps, and seasonality) with a mixed effects repeated measures Anova design. Results showed that the amount of light reaching the understory is low in both gaps and closed canopy. However, small but significant differences in light availability existed for both seasonality and magnitude of the perturbations. These differences could contribute to explain the dynamics of tree species regeneration in this forest. The knowledge of the factors conditioning light availability in the understory where tree regeneration begins is crucial in cloud forests because of energetic limitations in this ecosystem, and might be essential for future restoration and conservation plans concerning the preservation of the diversity and integrity of these forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.