Foxg1 is an ancient transcription factor gene orchestrating a number of neurodevelopmental processes taking place in the rostral brain. In this study, we investigated its impact on neocortical activity. We found that mice overexpressing Foxg1 in neocortical pyramidal cells displayed an electroencephalography (EEG) with increased spike frequency and were more prone to kainic acid (KA)-induced seizures. Consistently, primary cultures of neocortical neurons gain-of-function for Foxg1 were hyperactive and hypersynchronized. That reflected an unbalanced expression of key genes encoding for ion channels, gamma aminobutyric acid and glutamate receptors, and was likely exacerbated by a pronounced interneuron depletion. We also detected a transient Foxg1 upregulation ignited in turn by neuronal activity and mediated by immediate early genes. Based on this, we propose that even small changes of Foxg1 levels may result in a profound impact on pyramidal cell activity, an issue relevant to neuronal physiology and neurological aberrancies associated to FOXG1 copy number variations.
Aim: E-selectin is overexpressed on angiogenic and inflamed endothelium. Molecules binding to E-selectin with high affinity and specificity enable its use as a molecular imaging biomarker. Material & methods: The interactions of four different peptides (i.e., Ac-P1 [Acetyl-IELLQAR-CONH2], H2N-P2 [H2N-DITWDQLWDLMK-CONH2], H2N-P3A5 [H2N-YRNWAGRW-CONH2], and Ac-P4 [Acetyl-YRNWDGRW-CONH2]) with E-selectin were analyzed by computational methodologies, surface plasmon resonance and in vitro using activated human umbilical vein endothelial cells. Poly(butyl cyanoacrylate) microbubbles were functionalized with the best candidates and evaluated as molecular ultrasound probes in cultured cells and explanted carotid arteries. Results: H2N-P3A5 and Ac-P4 peptides bound stronger to E-selectin than Ac-P1 and H2N-P2, but with lower specificity. H2N-P2 bound with higher specificity and affinity than Ac-P1. Conclusion: H2N-P2 is a good candidate for designing E-selectin-targeted molecular imaging agents.
Neuronal progenitor cells (NPC) play an essential role in homeostasis of the central nervous system (CNS). Considering their ability to differentiate into specific lineages, their manipulation and control could have a major therapeutic impact for those CNS injuries or degenerative diseases characterized by neuronal cell loss. In this work, we established an in vitro co-culture and tested the ability of foetal NPC (fNPC) to integrate among post-mitotic hippocampal neurons and contribute to the electrical activity of the resulting networks. We performed extracellular electrophysiological recordings of the activity of neuronal networks and compared the properties of spontaneous spiking in hippocampal control cultures (HCC), fNPC, and mixed circuitries ex vivo. We further employed patch-clamp intracellular recordings to examine single-cell excitability. We report of the capability of fNPC to mature when combined to hippocampal neurons, shaping the profile of network activity, a result suggestive of newly formed connectivity ex vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.