[1] Recently acquired swath bathymetry of the Marsili basin has offered an unprecedented opportunity to study the processes of back arc ocean basin development in the Tyrrhenian Sea. In particular, the detailed morphology of Marsili seamount, a large, strongly elongated volcano located in an axial position within the <2 Ma ocean crust floored Marsili basin, is a key to understanding the mechanisms governing lithosphere formation in this young basin. The basin is near circular in shape with diameter on the order of 120 km and is positioned in the southern Tyrrhenian Sea, above the steeply dipping Ionian oceanic slab of Mesozoic age. It is bounded southward by the Aeolian volcanic arc and the Calabrian accretionary wedge, surface evidence of the northwesterly directed subduction. The most outstanding feature of the basin is the elongated, 3000-mhigh Marsili volcano which reveals distinctive morphology strikingly akin to the highorder segmentation and volcanic landforms described in mid-ocean slow spreading ridges. On the basis of its distinctive morphology and incremental growth relationship we propose that Marsili volcano represents a superinflated spreading ridge resulting from a distinct thermal pulse of increased melt production occurring within the young and immature Marsili basin. Surrounding cooler continental lithosphere thermally constricts ridge propagation and crust production in Marsili basin to the finite scale of Marsili volcano. Increased melt production to feed the superinflated Marsili ridge is generated by deep, lateral asthenospheric mantle flow produced at the edges of tears that bound the subducting ocean crust of the Ionian plate. Slow spreading plate separation, outpaced by the increase in magma generation, results in vertical accretion to produce the superinflated ridge. The existence of dip-directed tears delimiting the narrow Ionian slab is supported by the geological evolution of the surrounding foreland and Apennine/Maghrebid mountain belt during early/middle Pleistocene, i.e., the time of formation of the Marsili volcano. Present-day structure and volcanism furnish direct and indirect surface evidence of the presence and location of the slab tears.INDEX TERMS: 3035 Marine Geology and Geophysics: Midocean ridge processes; 3045 Marine Geology and Geophysics: Seafloor morphology and bottom photography; 8120 Tectonophysics: Dynamics of lithosphere and mantle-general; 8499 Volcanology: General or miscellaneous; KEYWORDS: Tyrrhenian Sea, volcano morphology, subduction, lithosphere dynamics, seafloor spreading Citation: Marani, M. P., and T. Trua, Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.