Unmanned aerial vehicles represent a new frontier in a wide range of monitoring and research applications. To fully leverage their potential, a key challenge is planning missions for efficient data acquisition in complex environments. To address this issue, this article introduces a general informative path planning framework for monitoring scenarios using an aerial robot, focusing on problems in which the value of sensor information is unevenly distributed in a target area and unknown a priori. The approach is capable of learning and focusing on regions of interest via adaptation to map either discrete or continuous variables on the terrain using variable-resolution data received from probabilistic sensors. During a mission, the terrain maps built online are used to plan information-rich trajectories in continuous 3-D space by optimizing initial solutions obtained by a coarse grid search. Extensive simulations show that our approach is more efficient than existing methods. We also demonstrate its real-time application on a photorealistic mapping scenario using a publicly available dataset and a proof of concept for an agricultural monitoring task.
This paper explores the impact that landmark parametrization has in the performance of monocular, EKFbased, 6-DOF simultaneous localization and mapping (SLAM) in the context of undelayed landmark initialization.Undelayed initialization in monocular SLAM challenges EKF because of the combination of non-linearity with the large uncertainty associated with the unmeasured degrees of freedom. In the EKF context, the goal of a good landmark parametrization is to improve the model's linearity as much Electronic supplementary material The online version of this article (as possible, improving the filter consistency, achieving robuster and more accurate localization and mapping.This work compares the performances of eight different landmark parametrizations: three for points and five for straight lines. It highlights and justifies the keys for satisfactory operation: the use of parameters behaving proportionally to inverse-distance, and landmark anchoring. A unified EKF-SLAM framework is formulated as a benchmark for points and lines that is independent of the parametrization used. The paper also defines a generalized linearity index suited for the EKF, and uses it to compute and compare the degrees of linearity of each parametrization. Finally, all eight parametrizations are benchmarked employing analytical tools (the linearity index) and statistical tools (based on Monte Carlo error and consistency analyses), with simulations and real imagery data, using the standard and the robocentric EKF-SLAM formulations.
Abstract-Unmanned aerial vehicles (UAVs) can offer timely and cost-effective delivery of high-quality sensing data. However, deciding when and where to take measurements in complex environments remains an open challenge. To address this issue, we introduce a new multiresolution mapping approach for informative path planning in terrain monitoring using UAVs. Our strategy exploits the spatial correlation encoded in a Gaussian Process model as a prior for Bayesian data fusion with probabilistic sensors. This allows us to incorporate altitudedependent sensor models for aerial imaging and perform constant-time measurement updates. The resulting maps are used to plan information-rich trajectories in continuous 3-D space through a combination of grid search and evolutionary optimization. We evaluate our framework on the application of agricultural biomass monitoring. Extensive simulations show that our planner performs better than existing methods, with mean error reductions of up to 45% compared to traditional "lawnmower" coverage. We demonstrate proof of concept using a multirotor to map color in different environments.
In this paper, we present a probabilistic framework to recover the extrinsic calibration parameters of a lidar-IMU sensing system. Unlike global-shutter cameras, lidars do not take single snapshots of the environment. Instead, lidars collect a succession of 3D-points generally grouped in scans. If these points are assumed to be expressed in a common frame, this becomes an issue when the sensor moves rapidly in the environment causing motion distortion. The fundamental idea of our proposed framework is to use preintegration over interpolated inertial measurements to characterise the motion distortion in each lidar scan. Moreover, by using a set of planes as a calibration target, the proposed method makes use of lidar point-to-plane distances to jointly calibrate and localise the system using on-manifold optimisation. The calibration does not rely on a predefined target as arbitrary planes are detected and modelled in the first lidar scan. Simulated and real data are used to show the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.