Fast diagnosis of suspicious pigmented skin lesions is imperative, but current bedside skin imaging technologies are either limited in penetration depth or resolution. Combining imaging methods is therefore highly relevant for skin cancer diagnostics. This pilot study evaluates the ability of optical coherence tomography, reflectance confocal microscopy, photoacoustic imaging and high-frequency ultrasound to differentiate malignant from benign pigmented skin lesions. A total of 41 pigmented skin tumours were scanned prior to excision. Morphologic features and blood vessel characteristics were analysed in reflectance confocal microscopy, optical coherence tomography, high-frequency ultrasound and photoacoustic imaging images and diagnostic accuracy assessed. Three novel photoacoustic imaging features, 7 reflectance confocal microscopy features and two optical coherence tomography features were detected with a high correlation to malignancy, diagnostic accuracy > 71%. No significant features were found in high-frequency ultrasound. Conclusively, optical coherence tomography, reflectance confocal microscopy and photoacoustic imaging in combination enables image-guided evaluation of suspicious pigmented skin tumours at the bedside. Combining these advanced techniques may help to diagnose skin cancer more efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.