Eucalyptol, also known as 1,8-cineole, is a monoterpene traditionally used to treat respiratory disorders due to its secretolytic properties. In addition to its myorelaxant effects, it also has anti-inflammatory actions in vitro. In this study, we aimed to evaluate the efficacy of acute treatment with 1,8-cineole on reducing airway inflammatory parameters. Ovalbumin (OVA)-sensitized guinea pigs were submitted to antigenic challenge (OVA) with or without pre-treatment with a single dose of 1,8-cineole administered by inhalation. Airway inflammatory parameters were reduced or absent in 1,8-cineole-treated animals as compared with untreated guinea pigs. Acute treatment with 1,8-cineole impaired the development of airway hyperresponsiveness to carbachol in isolated tracheal rings. Levels of the pro-inflammatory cytokines TNFa and IL-1b was lower in bronchoalveolar lavage fluid (BALF) of 1,8-cineol-treated guinea pigs than in untreated animals. 1,8-Cineole impaired the OVA-induced increase of the myeloperoxidase activity in BALF. 1,8-Cineole also prevented the reduction of the mucociliary clearance induced by the antigen presentation. The present investigation provides evidence that inhaled 1,8-cineole prevents hyperresponsiveness and inhibits inflammation in airways of ovalbumin-challenged guinea pigs.
1-Nitro-2-phenylethane is the first organic NO₂-containing molecule isolated from plants. It possesses interesting hypotensive, bradycardic, and vasodilator properties, but the mode by which it induces vasorelaxation is still unknown. The underlying mechanism involved in the vasodilator effect of 1-nitro-2-phenylethane was investigated in rat aorta. The vasorelaxant effects of 1-nitro-2-phenylethane did not depend on endothelial layer integrity, and the effects were refractory to L-N(G)-nitroarginine methyl ester (L-NAME)-induced nitric oxide synthase inhibition. Vasorelaxation was similarly resistant to treatment with indomethacin, cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine hydrochloride (MDL-12330A), and KT5720, indicating that neither prostaglandin release nor adenylyl cyclase activation is involved. Conversely, methylene blue- and ODQ-induced guanylate cyclase inhibition reduced the vasorelaxation induced by 1-nitro-2-phenylethane. The pharmacological blockade of K(+) channels with tetraethylammonium, glybenclamide, and 4-aminopyridine also blunted vasorelaxation induced by 1-nitro-2-phenylethane. The effects of 1-nitro-2-phenylethane were reversed by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and comparable to the effects induced by sodium nitroprusside. In silico analysis using an Ns H-NOX subunit of guanylate cyclase revealed a pocket on the macromolecule surface where 1-nitro-2-phenylethane preferentially docked. In vitro, 1-nitro-2-phenylethane increased cyclic guanosine 3',5'-monophosphate (cGMP) levels in rat aortic rings, an effect also reversed by ODQ. In conclusion, 1-nitro-2-phenylethane produces vasodilator effects by stimulating the soluble guanylate cyclase-cGMP pathway.
The present study deals with the pharmacological effects of the sesquiterpene alcohol (-)-α-bisabolol on various smooth-muscle preparations from rats. Under resting tonus, (-)-α-bisabolol (30-300 µmol/L) relaxed duodenal strips, whereas it showed biphasic effects in other preparations, contracting endothelium-intact aortic rings and urinary bladder strips, and relaxing these tissues at higher concentrations (600-1000 µmol/L). In preparations precontracted either electromechanically (by 60 mmol/L K(+)) or pharmacomechanically (by phenylephrine or carbachol), (-)-α-bisabolol showed only relaxing properties. The pharmacological potency of (-)-α-bisabolol was variable, being higher in mesenteric vessels, whereas it exerted relaxing activity with a lesser potency on tracheal or colonic tissues. In tissues possessing spontaneous activity, (-)-α-bisabolol completely decreased spontaneous contractions in duodenum, whereas it increased their amplitude in urinary bladder tissue. Administered in vivo, (-)-α-bisabolol attenuated the increased responses of carbachol in tracheal rings of ovalbumin-sensitized rats challenged with ovalbumin, but was without effect in the decreased responsiveness of urinary bladder strips in mice treated with ifosfamide. In summary, (-)-α-bisabolol is biologically active in smooth muscle. In some tissues, (-)-α-bisabolol preferentially relaxed contractions induced electromechanically, especially in tracheal smooth muscle. The findings from tracheal rings reveal that (-)-α-bisabolol may be an inhibitor of voltage-dependent Ca(2+) channels.
This study provided scientific basis that Hymenaea courbaril presents potential antioxidant, myorelaxant and anti-inflammatory actions, which support its use in folk medicine to treat inflammatory airway diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.