Chemical composition and morphological properties of Norway spruce wood and bark were evaluated. The extractives, cellulose, hemicelluloses, and lignin contents were determined by wet chemistry methods. The dimensional characteristics of the fibers (length and width) were measured by Fiber Tester. The results of the chemical analysis of wood and bark show the differences between the trunk and top part, as well as in the different heights of the trunk and in the cross section of the trunk. The biggest changes were noticed between bark trunk and bark top. The bark top contains 10% more of extractives and 9.5% less of lignin. Fiber length and width depends on the part of the tree, while the average of these properties are larger depending on height. Both wood and bark from the trunk contains a higher content of fines (fibers <0.3 mm) and less content of longer fibers (>0.5 mm) compared to the top. During storage, it reached a decrease of extractives mainly in bark. Wood from the trunk retained very good durability in terms of chemical composition during the storage. In view of the morphological characteristics, it occurred to decrease both average fibers length and width in wood and bark.
The paper deals with the assessment of the age of oak wood (0, 10, 40, 80 and 120 years) on its fire resistance. Chemical composition of wood (extractives, cellulose, holocellulose, lignin) was determined by wet chemistry methods and elementary analysis was performed according to ISO standards. From the fire-technical properties, the flame ignition and the spontaneous ignition temperature (including calculated activation energy) and mass burning rate were evaluated. The lignin content does not change, the content of extractives and cellulose is higher and the content of holocellulose decreases with the higher age of wood. The elementary analysis shows the lowest proportion content of nitrogen, sulfur, phosphor and the highest content of carbon in the oldest wood. Values of flame ignition and spontaneous ignition temperature for individual samples were very similar. The activation energy ranged from 42.4 kJ·mol−1 (120-year-old) to 50.7 kJ·mol−1 (40-year-old), and the burning rate varied from 0.2992%·s−1 (80-year-old) to 0.4965%·s−1 (10-year-old). The difference among the values of spontaneous ignition activation energy is clear evidence of higher resistance to initiation of older wood (40- and 80-year-old) in comparison with the younger oak wood (0- and 10-year-old). The oldest sample is the least thermally resistant due to the different chemical composition compared to the younger wood.
Particleboards containing waste rubber (tires and mixtures of isolators and carpets) filler were evaluated from the point of view of its flammability. The assessment of the utilization of these composites in the construction industry was analyzed through the determination of their spontaneous ignition temperatures, mass burning rate and calorific value. Based on the results of spontaneous ignition temperatures, similar values between particleboards and particleboards containing 10%, 15% and 20% of waste tires were obtained. The average time was from 298 s to 309 s and the average temperature was from 428.1 °C to 431.7 °C. For the mass burning rate, there were similar results between particleboards and particleboards containing 10% of waste tires and waste rubber. The time to initiation was 34 s and the time to reaching a maximal burning rate was from 66 s to 68 s. The calorimetry results showed similar properties for the calorimetric value and ash content in particleboards and particleboards containing 10% of waste tires and waste rubber. The calorific value was from 18.4 MJ·kg−1 to 19.7 MJ·kg−1 and the ash content from 0.5% to 2.9%.
In order to not limit the possibilities of using wood due to its flammability, the implementation of fire protection is an essential requirement. An integral part of the research on the fire protection of wood is the determination of the effectiveness of the applied protective means and their effect on changing its behavior under fire conditions. In this work, samples of spruce wood (Picea abies (L.) H. Karst) (50 mm × 40 mm × 10 mm) were treated with an aqueous solution of sodium silicate and different types of expandable graphite flakes that were applied to the surface of the samples. The fire characteristics of the samples were studied using a non-standard test method, the radiant heat source test, which was used to determine the mass loss, burning rate, and ignition time of the test samples, and the measurement was carried out via visual recording with a thermal camera. The results of the laboratory test method showed a significant positive effect of the application of all types of expandable graphite flakes. The main insight is that a suitable wood modification using expandable graphite flakes in combination with water glass has the potential to reduce mass loss by at least 73 ± 3% and reduce the temperature rise on the surface of the sample. The lower temperature of the surface of the burning material reduces the possibility of heat transfer to the surrounding materials and thus reduces the rate of fire spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.