Interactions of boar, bull, and human seminal plasma proteins with heparin and phosphorylcholine were studied by affinity LC using heparin immobilized to a Toyopearl support. A step gradient elution from 0.15 to 1.50 M NaCl was employed to elute the seminal plasma proteins. Relative amounts of the heparin-binding fraction of seminal plasma proteins (H+) in seminal plasma of three species were determined. Further on, the fraction of seminal plasma proteins interacting with phosphorylcholine-binding proteins (P+) was evaluated. P+ proteins were not found in human seminal plasma and their highest amount was present in bull seminal plasma. A CE method was developed for separation of seminal plasma proteins. Various capillaries and separation conditions were tested; the best resolution was obtained in a bare-silica capillary, with a micellar system consisting of a 0.02 M borate buffer and 0.05 M SDS pH 10.0. The optimized conditions were applied to the identification of the components in boar plasma.
The rapid development of proteomics has been made possible primarily by the progress in analytical and preparative separation methods. Biological systems are so complex that the separation procedures employed must be highly efficient as well as highly selective. The latter requirement is best met by affinity separations based on molecular recognition. The present review critically discusses the properties of the affinity sorbents employed in proteomics, namely, agarose gels, dextrans, modified methacrylate and acrylamide polymers, porous and nonporous silica, porous glass beads, monoliths, affinity membranes and magnetic beads. The physico-chemical properties of these materials, their preparation, application, approaches to their modification and their relative advantages and drawbacks are discussed.
The aim of the work was to analyze the influence of process parameters of high shear granulation on the process yield and on the morphology of granules on the basis of dynamic image analysis. The amount of added granulation liquid had a significant effect on all monitored granulometric parameters and caused significant changes in the yield of the process. In regard of the shape, the most spherical granules with the smoothest surface were formed at a liquid to solid ratio of ≈1. The smallest granules were formed at an impeller speed of 700 rpm, but the granules formed at 500 rpm showed both the most desirable shape and the highest process yield. Variation in the shape factors relied not only on the process parameters, but also on the area equivalent diameter of the individual granules in the batch. A linear relationship was found between the amount of granulation liquid and the compressibility of the granules. Using response surface methodology, models for predicting the size of granules and process yield related to the amount of added liquid and the impeller speed were generated, on the basis of which the size of granules and yield can be determined with great accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.