Background: Lung cancer (LC) is still the most common cause of cancer related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85% of all LC cases but is not a single entity. It is now accepted that, apart from the characteristic driver mutations, the unique molecular signatures of adeno-(AC) and squamous cell carcinomas (SCC), the two most common NSCLC subtypes should be taken into consideration for their management. Therapeutic interventions, however, frequently lead to chemotherapy resistance highlighting the need for in-depth analysis of regulatory mechanisms of multidrug resistance to increase therapeutic efficiency. Methods: Non-canonical Wnt5a and canonical Wnt7b and ABC transporter expressions were tested in primary human LC (n = 90) resections of AC and SCC. To investigate drug transporter activity, a three dimensional (3D) human lung aggregate tissue model was set up using differentiated primary human lung cell types. Following modification of the canonical, beta-catenin dependent Wnt pathway or treatment with cisplatin, drug transporter analysis was performed at mRNA, protein and functional level using qRT-PCR, immunohistochemistry, immune-fluorescent staining and transport function analysis. Results: Non-canonical Wnt5a is significantly up-regulated in SCC samples making the microenvironment different from AC, where the beta-catenin dependent Wnt7b is more prominent. In primary cancer tissues ABCB1 and ABCG2 expression levels were different in the two NSCLC subtypes. Non-canonical rhWnt5a induced down-regulation of both ABCB1 and ABCG2 transporters in the primary human lung aggregate tissue model recreating the SCC-like transporter pattern. Inhibition of the beta-catenin or canonical Wnt pathway resulted in similar down-regulation of both ABC transporter expression and function. In contrast, cisplatin, the frequently used adjuvant chemotherapeutic agent, activated beta-catenin dependent signaling that lead to up-regulation of both ABCB1 and ABCG2 transporter expression and activity.
The majority of lung cancers (LC) belong to the non-small cell lung carcinoma (NSCLC) type. The two main NSCLC sub-types, namely adenocarcinoma (AC) and squamous cell carcinoma (SCC), respond differently to therapy. Whereas the link between cigarette smoke and lung cancer risk is well established, the relevance of non-canonical Wnt pathway up-regulation detected in SCC remains poorly understood. The present study was undertaken to investigate further the molecular events in canonical and non-canonical Wnt signalling during SCC development. A total of 20 SCC and AC samples with matched non-cancerous controls were obtained after surgery. TaqMan array analysis confirmed up-regulation of non-canonical Wnt5a and Wnt11 and identified down-regulation of canonical Wnt signalling in SCC samples. The molecular changes were tested in primary small airway epithelial cells (SAEC) and various lung cancer cell lines (e.g. A549, H157, etc). Our studies identified Wnt11 and Wnt5a as regulators of cadherin expression and potentiated relocation of β-catenin to the nucleus as an important step in decreased cellular adhesion. The presented data identifies additional details in the regulation of SCC that can aid identification of therapeutic drug targets in the future.
Follicle center lymphoma (FCL) is an indolent B cell non-Hodgkin's lymphoma (NHL) characterized genetically by the t(14;18) translocation. Histological transformation and clinical progression of FCLs are frequently associated with secondary genetic alterations at both nucleic acid and chromosomal levels. To determine the type and pattern of genomic instability occurring in histological transformation of FCLs and the role of DNA mismatch repair defects in this procedure, we have performed microsatellite analysis, comparative genomic hybridization (CGH) and mutational analysis of hMLH1 and hMSH2 genes on serial biopsy specimens from patients with FCL transformed to diffuse large cell lymphoma (DLCL). Paired biopsy samples of eight patients were analyzed for microsatellite instability and structural alterations for hMLH1 and hMSH2 genes, and tumor samples of five patients were subjected to CGH analysis. A high level of microsatellite instability was associated with histological transformation of two cases of FCL, but no mutations of the hMLH1 and hMSH2 genes were detected in any of the lymphoma samples. In the five cases subjected to CGH analysis, the histological transformation of FCLs was associated with genomic imbalances at 21 chromosomal regions. The genomic abnormalities found were rather heterogeneous and none of the genetic changes were overrepresented in the transformed DLCLs. These data suggest that histological transformation of FCLs to DLCL is frequently associated with genome wide instability at both nucleic acid and chromosomal levels, although mutations of the hMSH1 and hMLH2 genes are not involved in this process. Leukemia (2000) 14, 2142-2148.
Complete lack of granuloma formation at the resection line and in its vicinity consequently restitutio ad integrum demonstrate the advantage of the harmonic scalpel over the stapler in the circumstances investigated. Overall the vibration transmission method was shown not to be inferior to the standard methods in peripheral lung tissue resection.
Follicular lymphoma (FL) is a B cell non-Hodgkin's lymphoma (NHL) that frequently displays a t(14;18) translocation. Clonal evolution and histological transformation of FL is frequently associated with the accumulation of secondary genetic alterations. It has been demonstrated that the BCL-6 gene can be altered by chromosomal rearrangements and by mutations clustering in its 5' noncoding region in a significant fraction of FL and diffuse large cell lymphoma (DLCL). To elucidate the role of the BCL-6 gene alterations in the histological transformation and clonal progression of FL, we analyzed serial biopsy specimens from 12 patients with FL. Two cases of FL showed no histological alteration in the second biopsy, and 10 cases of FL showed morphological transformation to DLCL in the second biopsy. Southern blot analysis was used to detect rearrangement of the BCL-6 gene, polymerase chain reaction-single strand conformation polymorphism and sequence analysis were performed for identification of mutations in the 5' noncoding region of the BCL-6 gene, and immunohistochemical analysis was applied to reveal the BCL-6 protein expression. No BCL-6 gene rearrangement was detected in any of the samples, but a total of 58 mutations were found in the 5' noncoding region of the BCL-6 gene in seven cases. In five cases, both the FL and the clonally related FL or DLCL, and in two cases only the DLCL samples were mutated. The mutations were identical in multiple biopsy specimens of FL that did not show morphological transformation. In six patients where FL cells underwent morphological transformation, considerable intraclonal sequence heterogeneity was observed, indicating an ongoing type of somatic mutation. Based on the pattern of shared and nonshared mutations, the genealogical relationship of neoplastic clones could be established. In all of these cases, the histological transformation of FL was associated with the emergence of a subpopulation marked by new sites of mutations in the BCL-6 5' noncoding sequences. In three of these six cases, the histological transformation is also associated with the reduced expression of the BCL-6 protein. These findings demonstrate that mutation of the 5' noncoding region of the BCL-6 gene developed in the clonal evolution of FL, and at different time points in the lymphoma evolution different clonotypes dominate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.