Stapled lung volume reduction surgery (LVRS) has recently been described for treatment of emphysema. Many questions arise regarding physiologic mechanisms of response from surgical treatment of emphysema. The objective of this study was to develop an animal model for the study of lung volume reduction surgery in diffuse heterogeneous emphysema. We hypothesized that elastic recoil would increase, static respiratory system compliance would decrease, and expiratory flows would increase after lung volume reduction surgery in animals with emphysema. In the study, emphysema was induced in 31 New Zealand White rabbits (3-5 kg) with endotracheally aerosalized porcine elastase (10,000-12,000 U). Lateral thoracotomies were performed 4-6 weeks postinduction under general anesthesia and mechanical ventilatory support. Stapled volume reduction was performed on the right lower lobe using a standard multirow pediatric stapler (U.S. Surgical). Pulmonary function tests were performed at baseline (preinduction), before stapling LVRS (postemphysema induction), immediately post stapling LVRS, and 1 week poststapling. Static respiratory system compliance, flow, conductance and forced expiratory flows, and peak flows at 20 and 40 cm3 of exhaled volume were analyzed. Animals were sacrificed 1 week poststapling, and bilateral lungs were harvested for histopathology. Diffuse but heterogeneous pulmonary emphysema was seen in these animals treated with high-dose aerosolized elastase. Static compliance increased, while expiratory flows and conductance decreased after induction of emphysema. Immediately post stapled volume reduction therapy, animals had decreased static compliance. By 1 week following surgery, animals showed increased forced expiratory flows and decreased expiratory resistance, although compliance was similar to preoperative levels. In conclusion, we describe initial results in an animal model of obstructive emphysema suitable for the study of lung volume reduction surgery. Changes in pulmonary function indicate that unilateral lower lobe LVRS increases airway conductance in the rabbits. Findings from LVRS studies in animal models such as this may help explain clinical improvement following LVRS in humans.
Laser exposure of the pulmonary parenchyma during treatment of emphysema and other clinical indications causes acute lung injury. Animal investigations are needed to understand and control laser-induced lung injury. We hypothesized that lung injury is deeper from Nd:YAG laser exposures than CO2 exposures because of deeper penetration of Nd:YAG wavelength light. We compared the temporal evolution of histologic injury in rabbits resulting from continuous mode shallow CO2 and Nd:YAG laser pulmonary parenchymal exposures applied in rabbits. Forty-six New Zealand white (NZW) rabbits underwent treatment with CO2 laser (n=18), Nd:YAG laser (n=18), or sham thoracotomy control (n=10) to the visceral pleural surface using 1 min of exposure (5 watts, defocused to 70 W/cm2 power density for both lasers). Animals were killed at 0, 4, 7, 21, and 49 d after exposure. Lung injury, similar to that seen clinically in humans, developed in all laser-treated animals. Injury progressed from ischemia and vascular congestion, to edema and necrosis, followed by pleural and parenchymal fibrosis. The acute injury was qualitatively distinct and slightly deeper in CO2 than Nd:YAG-treated animals (p<0.02) despite the shallower depth of penetration of the CO2 laser. These findings may imply that higher absorption coefficient for CO2 laser energy results in greater focal temperatures and injury in the areas of direct exposure, and suggest that Nd:YAG laser exposure at these settings may cause shallower injury than CO2 lasers in humans undergoing clinical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.