BackgroundChemoresistance is the main obstacle to cure in most malignant diseases. Anthracyclines are among the main drugs used for breast cancer therapy and in many other malignant conditions. Single parameter analysis or global gene expression profiles have failed to identify mechanisms causing in vivo resistance to anthracyclines. While we previously found TP53 mutations in the L2/L3 domains to be associated with drug resistance, some tumors harboring wild-type TP53 were also therapy resistant. The aim of this study was; 1) To explore alterations in the TP53 gene with respect to resistance to a regular dose epirubicin regimen (90 mg/m2 every 3 week) in patients with primary, locally advanced breast cancer; 2) Identify critical mechanisms activating p53 in response to DNA damage in breast cancer; 3) Evaluate in vitro function of Chk2 and p14 proteins corresponding to identified mutations in the CHEK2 and p14(ARF) genes; and 4) Explore potential CHEK2 or p14(ARF) germline mutations with respect to family cancer incidence.Methods and FindingsSnap-frozen biopsies from 109 patients collected prior to epirubicin (as preoperative therapy were investigated for TP53, CHEK2 and p14(ARF) mutations by sequencing the coding region and p14(ARF) promoter methylations. TP53 mutastions were associated with chemoresistance, defined as progressive disease on therapy (p = 0.0358; p = 0.0136 for mutations affecting p53 loop domains L2/L3). Germline CHEK2 mutations (n = 3) were associated with therapy resistance (p = 0.0226). Combined, mutations affecting either CHEK2 or TP53 strongly predicted therapy resistance (p = 0.0101; TP53 mutations restricted to the L2/L3 domains: p = 0.0032). Two patients progressing on therapy harbored the CHEK2 mutation, Arg95Ter, completely abrogating Chk2 protein dimerization and kinase activity. One patient (Epi132) revealed family cancer occurrence resembling families harboring CHEK2 mutations in general, the other patient (epi203) was non-conclusive. No mutation or promoter hypermethylation in p14(ARF) were detected.ConclusionThis study is the first reporting an association between CHEK2 mutations and therapy resistance in human cancers and to document mutations in two genes acting direct up/down-stream to each other to cause therapy failure, emphasizing the need to investigate functional cascades in future studies.
BackgroundThe Communication Skills Attitudes Scale (CSAS) created by Rees, Sheard and Davies and published in 2002 has been a widely used instrument for measuring medical students' attitudes towards learning communication skills. Earlier studies have shown that the CSAS mainly tests two dimensions of attitudes towards communication; positive attitudes (PAS) and negative attitudes (NAS). The objectives of our study are to explore the attitudes of Norwegian medical students towards learning communication skills, and to compare our findings with reports from other countries.MethodsThe CSAS questionnaire was mailed simultaneously to all students (n = 3055) of the four medical schools in Norway in the spring of 2003. Response from 1833 students (60.0%) were analysed by use of SPSS ver.12.ResultsA Principal component analysis yielded findings that differ in many respects from those of earlier papers. We found the CSAS to measure three factors. The first factor describes students' feelings about the way communication skills are taught, whereas the second factor describes more fundamental attitudes and values connected to the importance of having communication skills for doctors. The third factor explores whether students feel that good communication skills may help them respecting patients and colleagues.ConclusionOur findings indicate that in this sample the CSAS measures broader aspects of attitudes towards learning communication skills than the formerly described two-factor model with PAS and NAS. This may turn out to be helpful for monitoring the effect of different teaching strategies on students' attitudes during medical school.
Our results demonstrate that cross-sectionally designed studies will underestimate the number of ever-users of NPT in a cancer patient population. The use of NPT does not influence observed survival among cancer patients seen in north Norway.
BackgroundHigh triglycerides and low levels of high density lipoprotein (HDL)-cholesterol are observed to promote tumor growth. However, whether breast cancer heterogeneity may explain the contradictory influence of triglycerides and cholesterol observed on breast cancer prognosis remains unclear.MethodsA population-based survival study among 464 breast cancer cases identified within the Tromsø study was conducted. Pre-diagnostic triglycerides, total-cholesterol and HDL-cholesterol were measured, and detailed clinical and histopathological data were obtained. Using tissue microarray, all breast cancer cases were reclassified into the following subtypes: Luminal A, Luminal B, HER2-enriched, and triple negative breast cancer (TNBC). Multivariable Cox proportional hazards regression models were used to study the associations between pre-diagnostic lipids and breast cancer recurrence, mortality, and survival.ResultsA total of 464 breast cancer patients, with mean age at diagnosis of 57.9 years, were followed for a mean 8.4 years. TNBC patients in the highest tertile of triglycerides (≥ 1.23 mmol/l) had 3 times higher overall mortality compared to TNBC patients in the lowest tertile (≤ 0.82 mmol/l) (HR 2.99, 95% CI 1.17–7.63), and the 5-year overall survival was 19% lower for TNBC patients in the highest vs. lowest tertile of triglycerides (65% vs. 84%). TNBC patients in the highest tertile of the HDL-cholesterol/total-cholesterol ratio (≥0.35), compared to those in the lowest tertile (≤0.27), had a 67% reduced overall mortality risk (HR 0.33, 95% CI 0.12–0.89). No associations were observed between lipids and prognostic outcome among breast cancer patients overall, or among patients with luminal A and luminal B subtypes. Among HER2-enriched patients, pre-diagnostic triglyceride level was inversely associated with overall mortality.ConclusionOur study suggests that pre-diagnostic triglycerides and the HDL-cholesterol/total-cholesterol ratio may independently provide unique information regarding prognostic outcome among triple negative breast cancer patients. However, a small sample size underlines the need for additional studies.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4568-2) contains supplementary material, which is available to authorized users.
Background TP53 mutations have been associated with resistance to anthracyclines but not to taxanes in breast cancer patients. The MDM2 promoter single nucleotide polymorphism (SNP) T309G increases MDM2 activity and may reduce wild-type p53 protein activity. Here, we explored the predictive and prognostic value of TP53 and CHEK2 mutation status together with MDM2 SNP309 genotype in stage III breast cancer patients receiving paclitaxel or epirubicin monotherapy.Experimental DesignEach patient was randomly assigned to treatment with epirubicin 90 mg/m2 (n = 109) or paclitaxel 200 mg/m2 (n = 114) every 3rd week as monotherapy for 4–6 cycles. Patients obtaining a suboptimal response on first-line treatment requiring further chemotherapy received the opposite regimen. Time from last patient inclusion to follow-up censoring was 69 months. Each patient had snap-frozen tumor tissue specimens collected prior to commencing chemotherapy.Principal FindingsWhile TP53 and CHEK2 mutations predicted resistance to epirubicin, MDM2 status did not. Neither TP53/CHEK2 mutations nor MDM2 status was associated with paclitaxel response. Remarkably, TP53 mutations (p = 0.007) but also MDM2 309TG/GG genotype status (p = 0.012) were associated with a poor disease-specific survival among patients having paclitaxel but not patients having epirubicin first-line. The effect of MDM2 status was observed among individuals harbouring wild-type TP53 (p = 0.039) but not among individuals with TP53 mutated tumors (p>0.5).Conclusion TP53 and CHEK2 mutations were associated with lack of response to epirubicin monotherapy. In contrast, TP53 mutations and MDM2 309G allele status conferred poor disease-specific survival among patients treated with primary paclitaxel but not epirubicin monotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.