We present a smartphone-only solution for the detection of atrial fibrillation (AFib), which utilizes the built-in accelerometer and gyroscope sensors [inertial measurement unit, (IMU)] in the detection. Depending on the patient's situation, it is possible to use the developed smartphone application either regularly or occasionally for making a measurement of the subject. The smartphone is placed on the chest of the patient who is adviced to lay down and perform a noninvasive recording, while no external sensors are needed. After that, the application determines whether the patient suffers from AFib or not. The presented method has high potential to detect paroxysmal ("silent") AFib from large masses. In this paper, we present the preprocessing, feature extraction, feature analysis, and classification results of the envisioned AFib detection system based on clinical data acquired with a standard mobile phone equipped with Google Android OS. Test data was gathered from 16 AFib patients (validated against ECG), as well as a control group of 23 healthy individuals with no diagnosed heart diseases. We obtained an accuracy of 97.4% in AFib versus healthy classification (a sensitivity of 93.8% and a specificity of 100%). Due to the wide availability of smart devices/sensors with embedded IMU, the proposed methods could potentially also scale to other domains such as embedded body-sensor networks.
In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting. After motion artifact removal, in total 119 min of AFib data and 126 min of sinus rhythm data were considered for automated AFib detection. No other arrhythmias were considered in this study. The proposed algorithm requires no direct heartbeat peak detection from the SCG data, which makes it tolerant against interpersonal variations in the SCG morphology, and noise. Furthermore, the proposed method relies solely on the SCG and needs no complementary electrocardiography to be functional. For the considered data, the detection method performs well even on relatively low quality SCG signals. Using a majority voting scheme that takes five randomly selected segments from a signal and classifies these segments using the proposed algorithm, we obtained an average true positive rate of [Formula: see text] and an average true negative rate of [Formula: see text] for detecting AFib in leave-one-out cross-validation. This paper facilitates adoption of microelectromechanical sensor based heart monitoring devices for arrhythmia detection.
Cardiac translational and rotational vibrations induced by left ventricular motions are measurable using joint seismocardiography (SCG) and gyrocardiography (GCG) techniques. Multi-dimensional non-invasive monitoring of the heart reveals relative information of cardiac wall motion. A single inertial measurement unit (IMU) allows capturing cardiac vibrations in sufficient details and enables us to perform patient screening for various heart conditions. We envision smartphone mechanocardiography (MCG) for the use of e-health or telemonitoring, which uses a multi-class classifier to detect various types of cardiovascular diseases (CVD) using only smartphone’s built-in internal sensors data. Such smartphone App/solution could be used by either a healthcare professional and/or the patient him/herself to take recordings from their heart. We suggest that smartphone could be used to separate heart conditions such as normal sinus rhythm (SR), atrial fibrillation (AFib), coronary artery disease (CAD), and possibly ST-segment elevated myocardial infarction (STEMI) in multiclass settings. An application could run the disease screening and immediately inform the user about the results. Widespread availability of IMUs within smartphones could enable the screening of patients globally in the future, however, we also discuss the possible challenges raised by the utilization of such self-monitoring systems.
Timely diagnosis of cardiovascular diseases (CVD) is crucial to prevent morbidity and mortality. Atrial fibrillation (AFib) and heart failure (HF) are two prevalent cardiac disorders that are associated with a high risk of morbidity and mortality, especially if they are concurrently present. Current approaches fail to screen many at-risk individuals who would benefit from preventive treatment; while others receive unnecessary interventions. An effective approach to the detection of CVDs is mechanocardiography (MCG) by which translational and rotational precordial chest movements are monitored. In this study, we collected MCG data from a study sample of 300 hospitalized cardiac patients using multidimensional built-in inertial sensors of a smartphone. Our main objective was to detect concurrent AFib and acute decompensated HF (ADHF) using smartphone MCG (or sMCG). To this end, we adopted a supervised machine learning classification using multi-label and hierarchical classification. Logistic regression, random forest, and extreme gradient boosting were used as candidate classifiers. The results of the analysis showed the area under the receiver operating characteristic curve values of 0.98 and 0.85 for AFib and ADHF, respectively. The highest percentages of positive and negative predictive values for AFib were 91.9 and 100; while for ADHF, they were 56.9 and 88.4 for the multi-label classificationand 69.9 and 68.8 for the hierarchical classification,respectively. We conclude that using a single sMCG measurement, AFib can be detected accurately whereas ADHF can be detected with moderate certainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.