To mitigate the diesel particle pollution problem, diesel vehicles are fitted with modern exhaust after-treatment systems (ATS), which efficiently remove engine-generated primary particles (soot and ash) and gaseous hydrocarbons. Unfortunately, ATS can promote formation of low-vapor-pressure gases, which may undergo nucleation and condensation leading to formation of nucleation particles (NUP). The chemical nature and formation mechanism of these particles are only poorly explored. Using a novel mass spectrometric method, online measurements of low-vapor-pressure gases were performed for exhaust of a modern heavy-duty diesel engine operated with modern ATS and combusting low and ultralow sulfur fuels and also biofuel. It was observed that the gaseous sulfuric acid (GSA) concentration varied strongly, although engine operation was stable. However, the exhaust GSA was observed to be affected by fuel sulfur level, exhaust after-treatment, and driving conditions. Significant GSA concentrations were measured also when biofuel was used, indicating that GSA can be originated also from lubricant oil sulfur. Furthermore, accompanying NUP measurements and NUP model simulations were performed. We found that the exhaust GSA promotes NUP formation, but also organic (acidic) precursor gases can have a role. The model results indicate that that the measured GSA concentration alone is not high enough to grow the particles to the detected sizes.
Light-duty vehicle emission regulation in the European Union requires the dilution of the whole exhaust in a dilution tunnel with constant volume sampling prior to emission measurements. This methodology avoids measurement uncertainties associated with direct raw exhaust emission measurements from the tailpipe, such as exhaust flow determination, exhaust flow pressure pulsations, differences in the response time between exhaust flow and instrument signals, or their misalignment. Transfer tubes connecting the tailpipe to the dilution tunnel of different lengths, and mixing of the exhaust gas with the dilution air in the dilution tunnel may increase differences in measurements performed at different facilities. Recently, the light-duty vehicle regulation was complemented by on-road measurements with Portable Emissions Measurement Systems (PEMS). PEMS measurements are conducted from the vehicle tailpipe. Differences between tailpipe and full dilution tunnel measurements have not been adequately addressed so far. In this study we compare particle number emissions measured at the full dilution tunnel or directly at the tailpipe. The measurements covered solid particles with diameter larger than 23 nm, as required by the current regulation, but also solid particles larger than 10 nm, as recommended for future regulations. The studied vehicle technologies were diesel, gasoline, and compressed natural gas. The differences between tailpipe and dilution tunnel particle number emissions were found to be small (<15%) for both size ranges, with the exception of engine cold start (up to 35% in some cases). Theoretical estimates showed that agglomeration in the transfer line from the vehicle to the dilution tunnel might reduce particle concentrations by up to 17%. Exhaust flow rate determination and time misalignment of exhaust flow and particle concentration signals can introduce uncertainties of ±10% and ±5%, respectively, to the tailpipe measurements. The results suggest that tailpipe sampling is not only possible, but it can additionally give more representative (“real”) emissions of the vehicle and should be considered in post Euro 6 regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.