An extensive study on specific absorption rate (SAR) covering 720 simulations and 15 voxel models (18-105 kg) has been performed by applying the parallel finite-difference time-domain method. High-resolution whole-body models have been irradiated with plane waves from 300 MHz to 5 GHz by applying various incoming directions and polarizations. Detailed results of whole-body SAR and peak 10 g SAR are reported, and SAR variation in the dB scale is examined. For an adult, the effect of incoming direction on whole-body SAR is larger in the GHz range than at around 300-450 MHz, and the effect is stronger with vertical polarization. For a child (height approximately 1.2 m), the effect of incoming direction is similar as for an adult, except at 300 MHz for horizontal polarization. The effect of the phantom (18-105 kg) on whole-body SAR is larger at around 2-5 GHz and at vertical 300 MHz (proximity of whole-body resonance for the child) than at around horizontal 300-900 MHz. Body posture has little effect on whole-body SAR in the GHz range, but at around 300-450 MHz, one may even expect a 2 dB rise in whole-body SAR if posture is changed from the standing position. Posture affects peak 10 g SAR much more than whole-body SAR. The polarization of the incident electric field may have an effect of several dB on whole-body SAR. Between 2 and 5 GHz for adults, whole-body SAR is higher for horizontal than for vertical polarization, if the incoming direction is in the azimuth plane. In the GHz range, horizontal polarization gives higher whole-body SAR, especially for irradiation from the lateral direction. A comparison between homogeneous and heterogeneous models was done. A homogenized model underestimates whole-body SAR, especially at approximately 2 GHz. The basic restriction of whole-body SAR, set by ICNIRP, is exceeded in the smallest models ( approximately 20 kg) at the reference level of exposure, but also some adult phantoms are close to the limit. The peak 10 g SAR limits were never exceeded in the studied cases. The present ICNIRP guidelines should be revised by lowering the reference levels, especially at around 2-5 GHz.
On-body wireless communication channels are studied by using the Finite-Difference Time-Domain (FDTD) method and moving human models. An anechoic environment is assumed. Three movements having a different dynamical characteristic each, walking, weakly walking and running, are considered. Essentially, the results are obtained for 9 different polarization schemes regarding the dipole transmitter and receiver orientations and for six receiver locations. The results include the reception level curves, mean levels and standard deviation of reception (STD); dynamic path gain (PG) of a specific antenna can be obtained, too, by e.g. using the presented "offset method". The results, best applicable for electrically small dipole-like antennas, can be utilized in link budget calculations, channel model development and usability evaluations of different polarization schemes with different on-body links. The effect of the polarization scheme on the mean level is much understood by the theory of radiowave propagation over a lossy ground. Based on this theory, a rough method to estimate the mean reception level (and PG) is introduced and found usable for small dipole antennas under suitable conditions. Finally, reception changes due to uncertain receiver location are studied. A body-normally polarized small dipole receiver is less sensitive to its location than a body-tangential one.
The performance of perfectly matched layer (PML) absorbing boundary conditions is studied for finite-difference time-domain (FDTD) specific absorption rate (SAR) assessment, using convolutional PML (CPML) implementation of PML. This is done by investigating the variation of SAR values when the amount of free-space layers between the studied object and PML boundary is varied. Plane-wave exposures of spherical and rectangular objects and a realistic human body model are considered for testing the performance. Also, some results for dipole excitation are included. Results show that no additional free-space layers are needed between the numerical phantom and properly implemented CPML absorbing boundary, and that the numerical uncertainties due to CPML can be made negligibly small.
Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.