The kinesin superfamily of microtubule motor proteins is important in many cellular processes, including mitosis and meiosis, vesicle transport, and the establishment and maintenance of cell polarity. We have characterized two related kinesins in fission yeast, klp5 ϩ and klp6 ϩ , that are amino-terminal motors of the KIP3 subfamily. Analysis of null mutants demonstrates that neither klp5 ϩ nor klp6 ϩ , individually or together, is essential for vegetative growth, although these mutants have altered microtubule behavior. klp5⌬ and klp6⌬ are resistant to high concentrations of the microtubule poison thiabendazole and have abnormally long cytoplasmic microtubules that can curl around the ends of the cell. This phenotype is greatly enhanced in the cell cycle mutant cdc25-22, leading to a bent, asymmetric cell morphology as cells elongate during cell cycle arrest. Klp5p-GFP and Klp6p-GFP both localize to cytoplasmic microtubules throughout the cell cycle and to spindles in mitosis, but their localizations are not interdependent. During the meiotic phase of the life cycle, both of these kinesins are essential. Spore viability is low in homozygous crosses of either null mutant. Heterozygous crosses of klp5⌬ with klp6⌬ have an intermediate viability, suggesting cooperation between these proteins in meiosis.
Proper mitotic chromosome segregation requires dynamic interactions between spindle microtubules and kinetochores. Here we demonstrate that two related fission yeast kinesins, klp5+ and klp6+, are required for normal chromosome segregation in mitosis. Null mutants frequently lack a normal metaphase chromosome alignment. Chromosome pairs move back and forth along the spindle for an extended period prior to sister chromatid separation, a phenotype reminiscent of the loss of CENP-E in metazoans. Ultimately, sister chromatids segregate, regardless of chromosome position along the spindle, and viable daughter cells are usually produced. The initiation of anaphase B is sometimes delayed, but the rate of spindle elongation is similar to wildtype. Despite a delay, anaphase B often begins before anaphase A is completed. The klp5Δ and klp6Δ null mutants are synthetically lethal with a deletion of the spindle assembly checkpoint gene, bub1+, several mutants in components of the anaphase promoting complex, and a cold sensitive allele of the kinetochore and microtubule-binding protein, Dis1p. Klp5p-GFP and Klp6p-GFP localize to kinetochores from prophase to the onset of anaphase A, but relocalize to the spindle midzone during anaphase B. These data indicate that Klp5p and Klp6p are kinetochore kinesins required for normal chromosome movement in prometaphase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.