To develop a therapy for drug-resistant B-lineage acute lymphoblastic leukemia (ALL), we transduced T lymphocytes with anti-CD19 chimeric receptors, consisting of an anti-CD19 single-chain variable domain (reactive with most ALL cases), the hinge and transmembrane domains of CD8a, and the signaling domain of CD3f. We compared the antileukemic activity mediated by a novel receptor ('anti-CD19-BB-f') containing the signaling domain of 4-1BB (CD137; a crucial molecule for T-cell antitumor activity) to that of a receptor lacking costimulatory molecules. Retroviral transduction produced efficient and durable receptor expression in human T cells. Lymphocytes expressing anti-CD19-BB-f receptors exerted powerful and specific cytotoxicity against ALL cells, which was superior to that of lymphocytes with receptors lacking 4-1BB. Anti-CD19-BB-f lymphocytes were remarkably effective in cocultures with bone marrow mesenchymal cells, and against leukemic cells from patients with drug-resistant ALL: as few as 1% anti-CD19-BB-f-transduced T cells eliminated most ALL cells within 5 days. These cells also expanded and produced interleukin-2 in response to ALL cells at much higher rates than those of lymphocytes expressing equivalent receptors lacking 4-1BB. We conclude that anti-CD19 chimeric receptors containing 4-1BB are a powerful new tool for T-cell therapy of B-lineage ALL and other CD19 þ B-lymphoid malignancies.
T cells play a central role in the recognition and elimination of foreign pathogens. Signals through the T cell receptor (TCR) control the extent and duration of the T cell response. To ensure that T cells are not inappropriately activated, signaling pathways downstream of the TCR are subject to multiple levels of positive and negative regulation. Herein, we describe two related proteins, Sts-1 and Sts-2, that negatively regulate TCR signaling. T cells from mice lacking Sts-1 and Sts-2 are hyperresponsive to TCR stimulation. The phenotype is accompanied by increased Zap-70 phosphorylation and activation, including its ubiquitinylated forms. Additionally, hyperactivation of signaling proteins downstream of the TCR, a marked increase in cytokine production by Sts1/2(-/-) T cells, and increased susceptibility to autoimmunity in a mouse model of multiple sclerosis is observed. Therefore, Sts-1 and Sts-2 are critical regulators of the signaling pathways that regulate T cell activation.
Adoptive cell therapy represents a new paradigm in cancer immunotherapy but can be limited by poor persistence and function of transferred T cells 1. Here, through an in vivo pooled CRISPR-Cas9 mutagenesis screening, we demonstrate that CD8 + T cells are reprogrammed to long-lived effector cells with extensive accumulation, better persistence and robust effector function in tumors by targeting Regnase-1. Regnase-1-deficient CD8 + T cells show markedly improved therapeutic efficacy against mouse melanoma and leukemia. Through a secondary genome-scale CRISPR-Cas9 screening, we identify BATF as the key target of Regnase-1 and a rheostat in shaping antitumor responses. Loss of BATF suppresses the elevated accumulation and mitochondrial fitness of Regnase-1-deficient CD8 + T cells. Conversely, we reveal that targeting additional signaling factors including PTPN2 and SOCS1 improves the therapeutic efficacy of Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
In vivo persistence of chimeric antigen receptor (CAR)-modified T cells correlates with therapeutic efficacy, yet CAR-specific factors that support persistence are not well resolved. Using a CD33-specific CAR in an acute myeloid leukemia (AML) model, we show how CAR expression alters T cell differentiation in a ligand independent manner. Ex vivo expanded CAR-T cells demonstrated decreased naïve and stem memory populations and increased effector subsets relative to vector-transduced control cells. This was associated with reduced in vivo persistence. Decreased persistence was not due to specificity or tumor presence, but to pre-transfer tonic signaling through the CAR CD3ζ ITAMs. We identified activation of the PI3K pathway in CD33 CAR-T cells as responsible. Treatment with a PI3K inhibitor modulated the differentiation program of CAR-T cells, preserved a less differentiated state without affecting T cell expansion, and improved in vivo persistence and reduced tumor burden. These results resolve mechanisms by which tonic signaling of CAR-T cells modulates their fate, and identifies a novel pharmacologic approach to enhance the durability of CAR-T cells for immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.